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The human organism is an integrated network where complex physiological systems, each with 
its own regulatory mechanisms, continuously interact, and where failure of one system can 
trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of 
diverse systems with different types of interactions is a challenge. Here we develop a framework 
to probe interactions among diverse systems, and we identify a physiological network. We find 
that each physiological state is characterized by a specific network structure, demonstrating 
a robust interplay between network topology and function. Across physiological states, the 
network undergoes topological transitions associated with fast reorganization of physiological 
interactions on time scales of a few minutes, indicating high network flexibility in response to 
perturbations. The proposed system-wide integrative approach may facilitate the development 
of a new field, Network Physiology. 
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Physiological systems under neural regulation exhibit high 
degree of complexity with non-stationary, intermittent,  
scale-invariant and nonlinear behaviours1,2. Moreover, physi-

ological dynamics transiently change in time under different physi-
ological states and pathologic conditions3–5, in response to changes 
in the underlying control mechanisms. This complexity is further 
compounded by various coupling6,7 and feedback interactions8–10 
among different systems, the nature of which is not well-understood. 
Quantifying these physiological interactions is a challenge as one 
system may exhibit multiple simultaneous interactions with other 
systems where the strength of the couplings may vary in time. To 
identify the network of interactions between integrated physiologi-
cal systems, and to study the dynamical evolution of this network in 
relation to different physiological states, it is necessary to develop 
methods that quantify interactions between diverse systems.

Recent studies have identified networks with complex topolo-
gies11–13, and have focused on emergence of self-organization and 
complex network behaviour out of simple interactions14–17, net-
work robustness18–20, and, more recently, critical transitions due 
to failure in the coupling of interdependent networks21. Growth 
dynamics of structural networks have been investigated in network 
models11,13, and in physical systems13,22, and various structural 
and functional brain networks have been explored22,23. However, 
understanding the relationship between topology and dynamics of 
complex networks remains a challenge, especially when networks 
are comprised of diverse systems with different types of interaction, 
each network node represents a multicomponent complex system 
with its own regulatory mechanism, the output of which can vary 
in time, and when transient output dynamics of individual nodes 
affect the entire network by reinforcing (or weakening) the links 
and changing network topology. A prime example of a combination 
of all these network characteristics is the human organism, where 
integrated physiological systems form a network of interactions that 
affects physiological function, and where breakdown in physiologi-
cal interactions may lead to a cascade of system failures24.

We investigate the network of interactions between physiological 
systems, and we focus on the topology and dynamics of this net-
work and their relevance to physiological function. We hypothesize 
that during a given physiological state, the physiological network 
may be characterized by a specific topology and coupling strength 
between systems. Further, we hypothesize that coupling strength 
and network topology may abruptly change in response to transi-
tion from one physiological state to another. Such transitions may 
also be associated with changes in the connectivity of specific net-
work nodes, that is, the number of systems to which a given physi-
ological system is connected can change, forming subnetworks  
of physiological interactions. Probing physiological network 
connectivity and the stability of physiological coupling across 
physiological states may thus provide new insights on integrated  
physiological function. Such a system-wide perspective on physi-
ological interactions, tracking multiple components simultane-
ously, is necessary to understand the relationship between network  
topology and function.

Results
Time delay stability and network of physiological interactions. 
The framework we propose is based on a complex networks approach 
to quantify physiological interactions between diverse physiological 
systems, where network nodes represent different physiological 
systems and network links indicate the dynamical interaction 
(coupling) between systems. This framework allows to quantify 
the topology and the associated dynamics in the links strength of 
physiological networks during a given physiological state, taking 
into account the signal output of individual physiological systems 
as well as the interactions among them, and to track the evolution of 
multiple interconnected systems undergoing transitions from one 

physiological state to another (Fig. 1). We introduce the concept of 
time delay stability (TDS) to identify and quantify dynamic links 
among physiological systems. We study the network of interactions 
for an ensemble of key integrated physiological systems (cerebral, 
cardiac, respiratory, ocular and muscle activity). We consider 
different sleep stages (deep, light, rapid eye movement (REM) sleep 
and quite wake) as examples of physiological states. While earlier 
studies have identified how sleep regulation influences aspects of 
the specific control mechanism of individual physiological systems 
(for example, cardiac or respiratory3,4,25,26) or have focused on the 
organization of functional connectivity of electroencephalogram 
(EEG) networks during sleep27 and under neurological disorders 
such as epilepsy28, the dynamics and topology of a physiological 
network comprised of diverse systems have not been studied so far. 
Further, the relationship between network topology and function, 
and how it changes with transitions across distinct physiological states 
is not known. We demonstrate that sleep stages are associated with 
markedly different networks of physiological interactions (Fig. 2)  
characterized by different number and strength of links (Figs 3 
and 4), by different rank distributions (Fig. 5) and by specific node 
connectivity (Fig. 6). Traditionally, differences between sleep stages 
are attributed to modulation in the sympatho-vagal balance with 
dominant sympathetic tone during wake and REM25: spectral, 
scale-invariant and nonlinear characteristics of the dynamics of 
individual physiological systems indicate higher degree of temporal 
correlations and nonlinearity during wake and REM compared 
with non-REM (light and deep sleep) where physiological dynamics 
exhibit weaker correlations and loss of nonlinearity3,26. In contrast, 
the network of physiological interactions shows a completely 
different picture: the network characteristics during light sleep are 
much closer to those during wake and very different from deep 
sleep (Figs 2 and 3). Specifically, we find that network connectivity 
and overall strength of physiological interactions are significantly 
higher during wake and light sleep, intermediate during REM and 
much lower during deep sleep. Thus, our empirical observations 
indicate that while sleep-stage-related modulation in sympatho-
vagal balance has a key role in regulating individual physiological 
systems, it does not account for the physiological network topology 
and dynamics across sleep stages, showing that the proposed 
framework captures principally new information.

To quantify the interaction between physiological systems and 
to probe how this interaction changes in time under different physi-
ological conditions, we study the time delay with which modula-
tions in the output dynamics of a given physiological system are 
consistently followed by corresponding modulations in the sig-
nal output of another system. Periods of time with approximately 
constant time delay indicate a stable physiological interaction, and 
stronger coupling between physiological systems results in longer 
periods of TDS. Utilizing the TDS method, we build a dynamical 
network of physiological interactions, where network links between 
physiological systems (considered as network nodes) are established 
when the TDS representing the coupling of these systems exceeds a 
significance threshold level, and where the strength of the links is 
proportional to the percentage of time for which TDS is observed 
(Methods).

Transitions in network topology with physiological function. 
We apply this new approach to a group of healthy young subjects 
(Methods). We find that the network of interactions between physi-
ological systems is very sensitive to sleep-stage transitions. In a 
short time window of just a few minutes, the network topology can  
dramatically change—from only a few links to a multitude of links 
(Fig. 1)—indicating transitions in the global interconnectivity 
between physiological systems. These network transitions are not 
associated with random occurrence or loss of links but are char-
acterized by certain organization in network topology where given 
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links between physiological systems remain stable during the tran-
sition while others do not—for example, brain–brain links persist 
during the transition from deep sleep to light sleep while brain–
periphery links significantly change (Fig. 1c). Further, we find that 
sleep-stage transitions are paralleled by abrupt jumps in the total 
number of links leading to higher or lower network connectivity 
(Fig. 1c,d). These network dynamics are observed for each subject 
in the database, where consecutive episodes of sleep stages are par-
alleled by a level of connectivity specific for each sleep stage, and 
where sleep-stage transitions are consistently followed by transi-
tions in network connectivity throughout the course of the night 
(Fig. 1d). Indeed, the network of physiological interactions exhibits 
a remarkable responsiveness as network connectivity changes even 
for short sleep-stage episodes (arrows in Fig. 1d), demonstrating a 
robust relationship between network topology and function. This is 
the first observation of a real network evolving in time and under-
going topological transitions from one state to another.

To identify the characteristic network topology for each sleep 
stage, we obtain group-averaged TDS matrices, where each matrix 
element represents the percentage of time with stable time delay 
between two physiological systems, estimated over all episodes of 
a given sleep stage throughout the night. Matrix elements above a 
threshold of statistical significance (Fig. 7, Methods) indicate stable 

interactions between physiological systems represented by network 
links (Fig. 2). We find that matrix elements greatly vary for different 
sleep stages with much higher values for wake and light sleep, lower 
values for REM and lowest for deep sleep. This is reflected in higher 
network connectivity for wake and light sleep, lower for REM and 
significantly reduced number of links during deep sleep (Fig. 3a). 
Further, the TDS matrices indicate separate subgroups of interac-
tions between physiological systems—brain–periphery, periph-
ery–periphery and brain–brain interactions—that are affected 
differently during sleep stages and form different subnetworks. Spe-
cifically, matrix elements representing interactions between periph-
eral systems (cardiac, respiratory, chin, eye and leg) and the brain 
as well as interactions among the peripheral systems are very sensi-
tive to sleep-stage transitions, leading to different network topology 
for different sleep stages (Fig. 2). We find subnetworks with high 
number of brain–periphery and periphery–periphery links dur-
ing wake and light sleep, lower number of links during REM and 
a significant reduction of links at deep sleep (Fig. 3c). In contrast, 
matrix elements representing brain–brain interactions form a sub-
network with the same number of brain–brain links (Fig. 3e), and 
stable topology is consistently present in the physiological network 
during all sleep stages (Fig. 2). Sleep-stage-related transitions in  
network connectivity and topology are not only present in the  
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Figure 1 | Transitions in the network of physiological interactions. (a) Dynamical network of interactions between physiological systems where ten 
network nodes represent six physiological systems—brain activity (EEG waves: δ, θ, α, σ and β), cardiac (HR), respiratory (Resp), chin muscle tone, leg 
and eye movements. (b) Transition in the interactions between physiological systems across sleep stages. The time delay between two pairs of signals, 
(top) α-brain waves and chin muscle tone, and (bottom) HR and eye movement, quantifies their physiological interaction: highly irregular behaviour 
(blue dots) during deep sleep is followed by a period of TDS during light sleep indicating a stable physiological interaction (red dots for the HR–eye and 
orange dots for the α–chin interaction). (c) Transitions between physiological states are associated with changes in network topology: snapshots over 
30-s windows during a transition from deep sleep (dark grey) to light sleep (light grey). During deep sleep, the network consists mainly of brain–brain 
links. With transition to light sleep, links between other physiological systems (network nodes) emerge and the network becomes highly connected. The 
stable α–chin and HR–eye interactions during light sleep in (b) are shown by an orange and a red network link, respectively. (d) Physiological network 
connectivity for one subject during night sleep calculated in 30-s windows as the fraction (%) of present links out of all possible links (brain–brain links 
not included, see Fig. 3e). Red line marks sleep stages as scored in a sleep lab. Low connectivity is consistently observed during deep sleep (0:30–1:15 h 
and 1:50–2:20 h) and REM sleep (1:30–1:45 h and 2:50–3:10 h), while transitions to light sleep and wake are associated with a significant increase in 
connectivity.
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group-averaged data but also in the physiological networks of indi-
vidual subjects, suggesting universal behaviour (Fig. 2). Notably, 
we find a higher number of brain–periphery links during REM 
compared with deep sleep despite the inhibition of motoneurons 
in the brain leading to muscle atonia during REM29. The empirical 
observations of significant difference in network connectivity and 
topology during light sleep compared with deep sleep are surpris-
ing, given the similarity in spectral, scale-invariant and nonlinear 
properties of physiological dynamics during light sleep and deep 
sleep3,4,25,26 (both stages traditionally classified as non-rapid eye 
movement sleep (NREM)), and indicate that previously unrecog-
nized aspects of sleep regulation may be involved in the control of 
physiological network interactions.

Physiological states and network link strength stratification. Net-
works with identical connectivity and topology can exhibit different 
strength of their links. Network link strength is determined as the 
fraction of time when TDS is observed (Methods). We find that the 
average strength of network links changes with sleep-stage transi-
tions: network links are significantly stronger during wake and light 
sleep compared with REM and deep sleep—a pattern similar to the 
behaviour of the network connectivity across sleep stages (Fig. 3a,b). 
Further, subnetworks of physiological interactions exhibit different 
relationship between connectivity and average link strength. Specif-
ically, the subnetwork of brain–periphery and periphery–periphery 
interactions is characterized by significantly stronger links (and also 
higher connectivity) during wake and light sleep, and much weaker 

links (with lower network connectivity) during deep sleep and REM 
(Fig. 3c,d). In contrast, the subnetwork of brain–brain interactions 
exhibits very different patterns for the connectivity and the average 
link strength—while the group average subnetwork connectivity 
remains constant across sleep stages, the average link strength varies 
with highest values during light sleep and deep sleep, and a dramatic 
≈40% decline during REM. The observation of significantly stronger 
links in the brain–brain subnetwork during NREM compared with 
REM sleep is consistent with the characteristic of NREM as EEG-
synchronized sleep and REM as EEG-desynchronized sleep29. Dur-
ing NREM sleep, adjacent cortical neurons fire synchronously with 
a relatively low-frequency rhythm30 leading to coherence between 
frequency bands in the EEG signal, and thus to stable time delays 
and strong network links (Fig. 3f). In contrast, during REM sleep 
cortical neurons are highly active but fire asynchronously30, result-
ing in weaker links (Fig. 3f). Our findings of stronger links in the 
brain–brain subnetwork during non-REM sleep (Figs 3f and 4) 
indicate that bursts (periods of sudden temporal increase) in the 
spectral power of one EEG-frequency band are consistently syn-
chronized in time with bursts in a different EEG-frequency band, 
thus leading to longer periods of TDS and correspondingly stronger 
network links. This can explain some seemingly surprising network 
links—for example, we find a strong link between α and δ brain 
activity during non-REM sleep (Fig. 2) although α waves are greatly 
diminished and δ waves are dominant29. As the spectral densities of 
both waves are normalized before the TDS analysis (Methods), the 
presence of a stable α–δ link indicates that a relative increase in the 
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Figure 2 | Network connectivity across sleep stages. Group-averaged time delay stability (TDS) matrices and related networks of physiological interactions during 
different sleep stages: (a) wake; (b) REM sleep; (c) light sleep (LS); (d) deep sleep (DS). Matrix elements are obtained by quantifying the TDS for each pair of 
physiological systems after obtaining the weighted average of all subjects in the group: % TDs=( s Lii ii∑ ∑ ×/ ) 100 where Li indicates the total duration of a given 
sleep stage for subject i, and si is the total duration of TDS within Li for the considered pair of physiological signals. Colour code represents the average strength of 
interaction between systems quantified as the fraction of time (out of the total duration of a given sleep stage throughout the night) when TDS is observed. A network 
link between two systems is defined when their interaction is characterized by a TDS of   7% (arrow), a threshold determined by surrogate analysis (see Methods). 
The physiological network exhibits transitions across sleep stages—lowest number of links during deep sleep (d), higher during REM (b), and highest during light 
sleep (c) and quiet wake (a)—a behaviour observed in the group-averaged network as well as for each subject. Network topology also changes with sleep-stage 
transitions: from predominantly brain–brain links during deep sleep to a high number of brain–periphery and periphery–periphery links during light sleep and wake.
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spectral density in one wave is followed, with a stable time delay, 
by a corresponding increase in the density of the other wave—an 
intriguing physiological interaction that persists not only during 

deep sleep but is also present in light sleep, REM and quiet wake 
(Fig. 2). Notably, the average link strength of the brain–brain sub-
network is by a factor of ≈5 higher compared with all other links in 
the physiological network (Fig. 3d,f).

The finding of completely different sleep-stage stratification 
patterns in key network properties of the brain–brain subnetwork 
compared with the periphery–periphery/brain–periphery sub-
networks suggests a very different role these subnetworks have in 
coordinating physiological interactions during sleep. The similar-
ity in the brain–brain subnetwork during deep sleep and light sleep 
indicates that the proposed TDS approach is sensitive to quantify 
synchronous slow-wave brain activity during NREM sleep that 
leads to stronger brain–brain links during light sleep and deep 
sleep (≈50–60% TDS) compared with REM (≈35% TDS), as shown 
in Figs 3f and 4. The significant difference between light sleep and 
deep sleep observed for the periphery–periphery/brain–periphery 
subnetwork in the number of links (t-test: P < 10 − 12) as well as in 
the average link strength (t-test: P < 10 − 11) indicates that the inter-
actions between physiological dynamics outside the brain are very 
different during these sleep stages.

Our finding that the average link strength exhibits a specific 
stratification pattern across sleep stages (Fig. 3) raises the question 
whether the underlying distribution of the network links strength 
is also sleep-stage dependent. To this end we probe the relative 
strength of individual links, and we obtain the rank distribution of 
the strength of network links for each sleep stage averaged over all 
subjects in the group (Fig. 5a). We find that the rank distribution 
corresponding to deep sleep is vertically shifted to much lower val-
ues for the strength of the network links, while the rank distribution 
for light sleep and wake is for all links consistently higher than the 
distribution for REM. Thus, the sleep-stage stratification pattern we 
find for the average strength of the network links (Fig. 3d) originates 
from the systematic change in the strength of individual network 
links with sleep-stage transitions. Notably, while the strength of 
individual network links changes significantly with sleep stages, the 
rank order of the links does not significantly change. After rescal-
ing the rank distributions for light sleep and REM (by horizontal 
and vertical shifts), we find that they collapse onto the rank plots of 
deep sleep and wake, respectively, following two distinct functional 
forms: a slow and smoothly decaying rank distribution for REM and 
wake, and a much faster decaying rank distribution for deep sleep 
and light sleep with a characteristic plateau in the mid rank range 
indicating a cluster of links with similar strength (Fig. 5b). We note 
that, although the form of the rank distributions for deep sleep and 
light sleep as well as for wake and REM are, respectively, very simi-
lar, the average strength of the links is significantly different between 
deep sleep and light sleep and between wake and REM (Fig. 3d).

Local topology and connectivity of the physiological network. 
Our observations that physiological networks undergo dynamic 
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transitions where key global properties significantly change with 
sleep-stage transitions raise the question whether local topology 
and connectivity of individual network nodes also change during 

these transitions. Considering each physiological system (network 
node) separately, we examine the number and strength of all links 
connecting the system with the rest of the network. Specifically, we 
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Error bars for the original and surrogate data indicate the standard error for a specific link when averaged over all 36 subjects or over 36 surrogate pairs 
respectively. (b) Rescaling the plots reveals two distinct forms of rank distributions: a slow decaying distribution for wake and REM, and a fast decaying 
distribution for light sleep and deep sleep with a pronounced plateau in the middle rank range corresponding to a cluster of links with similar strength, 
most of which are related to the cardiac system.

0

5

10

15

A
ve

ra
ge

 li
nk

 s
tr

en
gt

h 
(%

)

Chin

DSLSW REM

0

5

10

15

A
ve

ra
ge

 li
nk

 s
tr

en
gt

h 
(%

)
HR

DSLSW REM

LS DSREM

C
hi

n

b

HR

Resp

ChinLeg

Eye   

�

�

�

� �

HR

Resp

ChinLeg

Eye   

�

�

�

� �

HR

Resp

ChinLeg

Eye   

�

�

�

� �

Wake

HR

Resp

ChinLeg

Eye   

�

�

�

� �

LS DSREMWake

H
R

a

HR

Resp
ChinLeg

Eye   

�

�

�

� �

HR

Resp
Leg

Eye   

�

�

�

� �

HR

Resp
ChinLeg

Eye   

�

�

�

� �

HR

Resp
ChinLeg

Eye   

�

�

�

� �

Chin

Figure 6 | Transitions in connectivity and link strength of individual network nodes across sleep stages. The number of links to specific network nodes 
significantly changes, with practically no links during deep sleep, a few links during REM and much higher connectivity during light sleep and wake. Notably, 
the average strength of the links connecting a given network node is also lowest during deep sleep and highest during light sleep and wake. Shown are 
connectivity and average link strength for two network nodes: (a) heart and (b) chin. This sleep-stage stratification pattern in individual node connectivity and 
in the average strength of the links connecting a specific network node is consistent with the transitions of the entire network across sleep stages shown in  
Fig. 3 c,d. Networks for (a) heart and (b) chin are obtained by averaging the corresponding networks for all subjects. During deep sleep, no links to the heart 
are shown as the strength of each link averaged over all subjects is below the significance threshold (Figs 2 and 7, Methods). Right bars in the panels represent 
for different sleep stages the group mean of the average strength of network links connecting the heart and chin, respectively, and error bars show the s.d. 
obtained from a group of 36 subjects (Methods). Left bars represent an individual subject. Note that the absence of a link between heart rate and respiration 
in the physiological network does not indicate absence of cardio–respiratory coupling but rather that this coupling as represented by time delay stability 
(TDS) is rarely stable for periods longer than 2–4 min (where 2 min is the minimum window over which TDS is determined; Method section), and that cardio–
respiratory TDS episodes form  < 7% of the recordings, which is the significance threshold level (Method section). Such ‘on’ and ‘off’ intermittent interaction 
between these two systems is observed also in other independent measures of cardio–respiratory coupling—respiratory sinus arrhythmia (RSA)41,42 and the 
degree of phase synchronization6—where relatively short ‘on’ episodes are separated by periods of no interrelation as quantified by these measures.
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find that the cardiac system is highly connected to other physiologi-
cal systems in the network during wake and light sleep (Fig. 6). In 
contrast, during deep sleep we do not find statistically significant 
TDS in the interactions of the cardiac system, which is reflected by 
absence of cardiac links (Fig. 6). Further, we find that the average 
strength of the links connected to the cardiac system also changes 
with sleep stages: stronger interactions (high % TDS) during wake 
and light sleep, and significantly weaker interactions below the sig-
nificance threshold during deep sleep (Fig. 6). Such ‘isolation’ of the 
cardiac node from the rest of the network indicates a more autono-
mous cardiac function during deep sleep—also supported by earlier 
observations of breakdown of long-range correlations and close to 
random behaviour in heartbeat intervals in this sleep stage3. Transi-
tion to light sleep, REM and wake, where the average link strength 
and connectivity of the cardiac system is significantly higher indi-
cating increased interactions with the rest of the network, leads to 
correspondingly higher degree of correlations in cardiac dynamics3. 
Similarly, respiratory dynamics also exhibit high degree of corre-
lations during REM and wake, lower during light sleep and close 
to random behaviour during deep sleep26. We also find such tran-
sitions in the number and strength of links across sleep stages for 
other network nodes (Fig. 6). Moreover, the sleep-stage stratification 
pattern in connectivity and average link strength for individual net-
work nodes (Fig. 6) is consistent with the pattern we observe for the 
entire network (Fig. 3). Our findings of significant reduction in the 
number and strength of brain–periphery and periphery–periphery 
links in the corresponding subnetworks during deep sleep indicate 
that breakdown of cortical interactions, previously reported during 
deep sleep31, may also extend to other physiological systems under 
neural regulation. Indeed, the low connectivity in the physiological 
network we find in deep sleep may explain why people awakened 
during deep sleep do not adjust immediately and often feel groggy 
and disoriented for a few minutes. This effect is not observed if sub-

jects are awakened from light sleep29 when we find the physiological 
network to be highly connected (Fig. 2). Further, as risk of preda-
tion modifies sleep architecture32–34 and as abrupt awakening from 
deep sleep is associated with increased sleep inertia, higher sensory 
threshold, and impaired sensory reaction and performance35,36 that 
may lead to increased vulnerability, the fact that deep sleep (lowest 
physiological network connectivity) dominates at the beginning of 
the night and not close to dawn, when many large predators prefer-
ably hunt, may have been evolutionarily advantageous.

Discussion
Introducing a framework based on the concept of TDS, we iden-
tify a robust network of interactions between physiological systems, 
which remains stable across subjects during a given physiologi-
cal state. Further, changes in the physiological state lead to com-
plex network transitions associated with a remarkably structured 
reorganization of network connectivity and topology that simul-
taneously occurs in the entire network as well as at the level of indi-
vidual network nodes, while preserving the hierarchical order in the 
strength of individual network links. Such network transitions lead 
to the formation of subnetworks of physiological interactions with 
different topology and dynamical characteristics. In the context 
of sleep stages, network transitions are characterized by a specific 
stratification pattern where network connectivity and link strength 
are significantly higher during light sleep compared with deep sleep 
and during wake compared with REM. This cannot be explained 
by the dynamical characteristics of the output signals from individ-
ual physiological systems, which are similar during light sleep and 
deep sleep as well as during wake and REM. The dramatic change 
in network structure with transition from one physiological state to 
another within a short time window indicates a high flexibility in 
the interaction between physiological systems in response to change 
in physiological regulation. Such change in network structure in 
response to change in the mechanisms of control during different 
physiological states suggests that our findings reflect intrinsic fea-
tures of physiological interaction. The observed stability in network 
topology and rank order of links strength during sleep stages, and 
the transitions in network organization across sleep stages provide 
new insight into the role that individual physiological systems as 
well as their interactions have during specific physiological states. 
While our study is limited to a data-driven approach, these empiri-
cal findings may facilitate future efforts on developing and testing 
network models of physiological interaction. This system-wide 
integrative approach to individual systems and the network of their 
interactions may facilitate the emergence of a new dimension to the 
field of systems physiology7 that will include not only interactions 
within but also across physiological systems. In relation to critical 
clinical care, where multiple organ failure is often the reason for fatal 
outcome24,37, our framework may have practical utility in assess-
ing whether dynamical links between physiological systems remain 
substantially altered even when the function of specific systems is 
restored after treatment38. While we demonstrate one specific appli-
cation, the framework we develop can be applied to a broad range of 
complex systems where the TDS method can serve as a tool to char-
acterize and understand the dynamics and function of real-world 
heterogeneous and interdependent networks. The established rela-
tionship between dynamical network topology and network func-
tion has not only significant medical and clinical implications, but is 
also of relevance for the general theory of complex networks.

Methods
Data. We analyse continuously recorded multichannel physiological data obtained 
from 36 healthy young subjects (18 female, 18 male, with ages between 20–40, 
average 29 years) during night-time sleep39 (average record duration is 7.8 h). This 
allows us to track the dynamics and evolution of the network of physiological inter-
actions during different sleep stages and sleep-stage transitions (Fig. 1). We focus on 
physiological dynamics during sleep as sleep stages are well-defined physiological 
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Student t-test indicates statistically significant strength of a given link.
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states, and external influences due to physical activity or sensory inputs are reduced 
during sleep. Sleep stages are scored in 30 s epochs by sleep lab technicians based 
on standard criteria. In particular, we focus on the EEG, the electrocardiogram, 
respiration, the electrooculogram, and the electromyogram of the chin and leg. In 
order to compare these very different signals with each other and to study interrela-
tions between them, we extract the following time series from the raw signals: the 
spectral power of five frequency bands of the EEG in moving windows of 2 s with a 
1 s overlap: δ waves (0.5–3.5 Hz), θ waves (4–7.5 Hz), α waves (8–11.5 Hz), σ waves 
(12–15.5 Hz) and β waves (16–19.5 Hz); the variance of the electrooculogram and 
electromyogram signals in moving windows of 2 s with a 1 s overlap; heartbeat RR 
intervals and interbreath intervals are both re-sampled to 1 Hz (1 s bins) after which 
values are inverted to obtain heart rate and respiratory rate. Thus, all time series 
have the same time resolution of 1 s before the TDS analysis is applied.

Utilizing sleep data as an example, we demonstrate that a network approach 
to physiological interactions is necessary to understand how modulations in the 
regulatory mechanism of individual systems translate into reorganization of  
physiological interactions across the human organism.

TDS method. Integrated physiological systems are coupled by feedback and/or 
feedforward loops with a broad range of time delays. To probe physiological 
coupling, we propose an approach based on the concept of TDS: in the presence 
of stable/strong interactions between two systems, transient modulations in the 
output signal of one system lead to corresponding changes that occur with a stable 
time lag in the output signal of another coupled system. Thus, long periods of 
constant time delay indicate strong physiological coupling.

The TDS method we developed for this study consists of the following steps:
To probe the interaction between two physiological systems X and Y, we 

consider their output signals {x} and {y} each of length N. We divide both signals 
{x} and {y} into NL-overlapping segments v of equal length L = 60 s. We choose an 
overlap of L/2 = 30 s, which corresponds to the time resolution of the conventional 
sleep-stage-scoring epochs, and thus NL = [2N/L] − 1. Before the analysis, the signal 
in each segment v is normalized separately to zero mean and unit standard devia-
tion, in order to remove constant trends in the data and to obtain dimensionless 
signals. This normalization procedure assures that the estimated coupling between 
the signals {x} and {y} is not affected by their relative amplitudes.

Next, we calculate C x yxy
v

L i v L
v

i
L

i v L
v( ) ( ) ( )t t= + −= + − +∑1

1 21 1 2 , which is the 
cross-correlation function within each segment v = 1,…,NL by applying periodic 
boundary conditions. For each segment v, we define the time delay t0

v to cor-
respond to the maximum in the absolute value of the cross-correlation function 
Cv

xy(t) in this segment t t
t t t0

v
Cxy

v Cxy
v= ≥ ′ ∀ ′

|| ( )| | ( )| . Time periods of stable interrela-

tion between two signals are represented by segments of approximately constant t0  
(light shade region in Fig. 1b) in the newly defined series of time delays, { } , ,t0 1

v
v NL= … .  

In contrast, absence of stable coupling between the signals corresponds to large  
fluctuations in t0 (dark shade region in Fig. 1b).

We identify two systems as linked if their corresponding signals exhibit  
a time delay that does not change by more than  ± 1 s for several consecutive  
segments v. We track the values of t0 along the series {t0

v}: when for at least four 
out of five consecutive segments v (corresponding to a window of 5×30 s) the time 
delay remains in the interval [t0 − 1, t0 + 1], these segments are labelled as stable. 
This procedure is repeated for a sliding window with a step size one along the 
entire series {t0

v}. The % TDS is finally calculated as the fraction of stable points  
in the time series {t0

v}.
Longer periods of TDS between the output signals of two systems reflect more 

stable interaction/coupling between these systems. Thus, the strength of the links 
in the physiological network is determined by the percentage of time when TDS 
is observed: higher percentage of TDS corresponds to stronger links. To identify 
physiologically relevant interactions, represented as links in the physiological  
network, we determine a significance threshold level for the TDS based on  
comparison with surrogate data: only interactions characterized by TDS values 
above the significance threshold are considered.

The TDS method is general, and can be applied to diverse systems. It is  
more reliable in identifying physiological coupling compared with traditional 
cross-correlation and cross-coherence analyses (Fig. 8), which are not suitable  
for heterogeneous and non-stationary signals, and are affected by the degree of 
auto-correlations in these signals40.

To compare interactions between physiological systems that are very different 
in strength and vary with change of physiological state (for example, transitions 
across sleep stages), we define the significance threshold as the percentage of TDS 
for which all links included in the physiological network are statistically signifi-
cant. To identify statistical significance of a given link between two physiological 
systems, we compare the distribution of TDS values for this link obtained from all 
36 subjects in our database with the distribution of TDS values obtained for 100 
surrogates of this link where the signal outputs from the same two physiological 
systems taken from different subjects are paired for the analysis in order to elimi-
nate the endogenous physiological coupling. A Student t-test was performed to 
determine the statistical significance between the two distributions. This procedure 
is repeated for all pairs of systems (links) in the network, and network links are 
identified as significant when the t-test P-value  < 10 − 3. The significance threshold 
level for TDS is then defined as the value above which all network links are statisti-

cally significant, and thus represent endogenous interactions between physiological 
systems. We find that a threshold of ~7% TDS is needed to identify networks of 
statistically significant links for all sleep stages (Fig. 7).

Surrogate tests. To confirm that the TDS method captures physiologically rel-
evant information about the endogenous interactions between systems, we perform 
a surrogate test where we pair physiological signals from different subjects, thus 
eliminating physiological coupling. Applying the TDS method to these surrogate 
data, we obtain almost uniform rank distributions with significantly decreased 
link strength (Fig. 5a) due to the absence of physiological interactions. Further, all 
surrogate distributions conform to a single curve, indicating that the sleep-stage 
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Figure 9 | Stability of sleep-stage stratification pattern in network 
connectivity. Group-averaged number of network links for two different 
thresholds (Th) during wake, REM, light and deep sleep. Results for 
threshold of Th = 5% time delay stability (TDS) are shown in a, c and e, and 
results for threshold of Th = 9% TDS are shown in b, d and f. The sleep-
stage stratification pattern observed for the significance threshold of 7% 
TDS (shown in Fig. 3) is preserved also for thresholds of 5 and 9% TDS, 
indicating stability of the results. Note that the number of links in the brain–
brain subnetwork remains unchanged for different sleep stages (e, f) as the 
strength of all links in this subnetwork is well above 9% TDS (Fig. 3f).
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stratification we observe for the real data reflects indeed changes in physiological 
coupling with sleep-stage transitions. In contrast, the same surrogate test applied to 
traditional cross-correlation analysis does not show a difference between the rank 
distributions from surrogate and real data (Fig. 8).

We find that the TDS method is better suited than the traditional cross- 
correlation analysis in identifying networks of endogenous physiological interac-
tions. Rank plots obtained from cross-correlation analysis (Fig. 8) show that the 
cross-correlation strength Cmax (global maximum of the cross-correlation func-
tion) is consistently lower for all links during deep sleep, higher for light sleep and 
REM, and highest during wake—a stratification related to the gradual increase in 
the strength of autocorrelations in the signal output of physiological systems3,26, 
which in turn increases the degree of cross-correlations40. Surrogate tests based 
on pairs of signals from different subjects, where the coupling between systems 
is abolished but physiological autocorrelations are preserved, show no statistical 
difference between the surrogate (open symbols) and original (filled symbols) rank 
distributions of Cmax, suggesting that in this context cross-correlations do not 
provide physiologically relevant information regarding the interaction between 
systems. Indeed, even for uncoupled systems, high autocorrelations in the output 
signals lead to spurious detection of cross-correlations40. In contrast, the TDS 
method is not affected by the autocorrelations—surrogate rank plots for different 
sleep stages collapse and do not exhibit vertical stratification as shown in Fig. 5a.

To test the robustness of the stratification pattern in network topology and 
connectivity across sleep stages (shown in Figs 2 and 3), we repeat our analyses for 
two additional thresholds: 5% TDS and 9% TDS. With increasing the threshold for 
TDS from 5 to 9%, the overall number of links in the network decreases (compare 
Fig. 9a,c,e with Fig. 9b,d,f). However, the general sleep-stage stratification pattern is 
preserved with highest number of links during light sleep and wake, lower during 
REM, and significant reduction in network connectivity during deep sleep (Fig. 9). 
The stability of the observed pattern in network connectivity for a relatively broad 
range around the significance threshold of 7% TDS indicates that the identified 
network is a robust measure of physiological interactions. 
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