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Magnetoresistance of normal conductorÕinsulatorÕperfect conductor composites
with a columnar microstructure
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The in-plane magnetoresistance of columnar composites is studied for a class of three-constituent mixtures
of normal conductor, perfect insulator, and perfect conductor, where the magnetic fieldB is applied in the
plane perpendicular to the columnar axis. Exact relations are found between the bulk effective resistivity tensor

r̂e of such a medium and that of a medium where the perfect insulator and perfect conductor have exchanged

their spatial locations. Exact expressions are found in some cases for the leading order largeB behavior ofr̂e ,
for periodic microstructures and certain directions and ranges of directions ofB. Numerical calculations are

used to computer̂e in those microstructures for all directions ofB, and for various magnitudes ofuBu. The
different results are compared and their significance is discussed.
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I. INTRODUCTION

The magnetotransport properties of composite media h
been subject to increased attention in recent years. Som
this involves microstructures where one of the constituent
ferromagnetic, leading to the phenomenon of ‘‘gia
magnetoresistance.’’1,2 However, even when none of th
constituents have any unusual magnetic properties, o
than the normal classical Hall effect which is present in
electronic conductors, some surprising phenomena are fo
to appear. Those include a bulk effective magnetoresisti
which oscillates rapidly with changing directions of the ma
netic fieldB and the average current density^J&, whenB is
large enough, in the case of a periodic microstructure, eve
that microstructure has a very high point symmetry, such
cubic or square.3,4 The most striking effects were predicte
for two-constituent columnar microstructures that are p
odic in the plane perpendicular to the columnar axis, whe
periodic array of inclusions is embedded in a normal c
ducting host, denoted byM, and the inclusions are eithe
perfectly insulating, denoted byI, or perfectly conducting,
denoted byS. Those effects appear whenB lies in that plane
and is strong enough so that the Hall-to-Ohmic resistiv
ratio of theM constituentH[rHall /rOhmic5muBu (m is the
Hall mobility of that constituent! satisfiesuHu.1. In that
case, not only do the in-plane components of the bulk eff
tive resistivity tensorr̂e oscillate strongly whenB is rotated
in that plane, but they also often exhibit a nonsaturating
havior, forever increasing asH2 when uHu@1.5,6

Another surprising result of those studies was that, qu
often, the local current distribution in such periodic micr
structures becomes very simple in the limituHu@1. Thus,
when the inclusion shapes and their periodic arrangemen
very simple,~e.g., square array of parallel circular cylinde
or square cross-section rods!, the asymptotic current distri
butionJ(r ) can be calculated in closed form ifB lies along a
low order lattice axis of the array. Consequently, closed fo
expressions were also derived for the bulk effective long
dinal resistivity r i

(e) and the bulk effective in-plane trans

verse resistivityr̃'
(e) .5,6 In another recent study, an extensio
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of the classical duality transformation of two-dimension
~2D! conductors was used to derive exact relations betw
the resistivity components of anM /I columnar composite
mixture and those of anM /S mixture with the same
microstructure.7 Recently, a study of disordered, two
constituent columnar composites ofM /I andM /S mixtures,
using a modification of the Bruggeman self-consiste
effective-medium approximation, showed that such syste
also exhibit interesting behavior whenuHu@1.8 Very re-
cently, a similar study of a disordered,three-constituent
M /I /S columnar composite revealed that such systems
hibit a critical point which is due to a different type of pe
colation process.9

In this paper, we report on other studies ofthree-
constituentcolumnar composite media, where bothI and S
inclusions are embedded in anM host. In particular, we fo-
cus our attention on such mixtures where the 2D microstr
ture is periodic. Such three-constituentM /I /S microstruc-
tures, while they are more difficult to fabricate than period
two-constituentM /I or M /S microstructures, are expected
allow greater flexibility in manipulating the macroscopic r
sponse.

We first show that the three-dimensional~3D! transport
problem in such a medium can be reduced to a 2D prob
in the plane perpendicular to the columnar axis. We then
the classical duality transformation for such a medium
obtain some exact relations between the bulk effective re
tivity tensorr̂e of a columnarM /I /S mixture and that of the
‘‘ I /S exchanged composite,’’ denoted byr̂ex , where theI
andSconstituents have exchanged their spatial locations.
this is done in Sec. II.

In Sec. III we develop some general principles for co
ducting an asymptotic analysis of the strong field~i.e., uHu
@1) behavior of periodic, three-constituent,M /I /S colum-
nar microstructures. We derive expressions for the lead
order largeH behavior of the bulk effective resistivity com
ponentsr i

(e) and r̃'
(e) in some such microstructures. This

done by first finding the asymptotic local electric current a
14 313 ©2000 The American Physical Society
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field distributions using considerations and methods t
were developed earlier.6,10This can usually be done only ifB
lies in some selected directions, or in some restricted ran
of directions. In those ranges, it is found that the mac
scopic response of the system can sometimes be reprod
by a simple regular resistor network, with resistances t
can be calculated from the asymptotic analysis. This gre
simplifies the analysis of such systems. The results forr i

(e)

and r̃'
(e) are tested on some of the exact relations derived

Sec. II.
In Sec. IV we use a numerical procedure, developed

lier for calculatingr̂e of periodic microstructures,11 in order
to computer̂e for all in-plane directions ofB, and for vari-
ous finite values ofH. Those results are exhibited as pol
plots of the different components ofr̂e , and are compared
both with the exact relations of Sec. II, and with th
asymptotic expressions found in Sec. III.

Section V includes a discussion of our main results,
well as suggestions for further directions of research in
area.

II. THEORY

We will always choose thex coordinate to lie along the
columnar axis. The local conductivity tensorŝ(r ) will thus
be independent ofx. The local electric fieldE(r ) and current
density or fluxJ(r ) will also be independent ofx, but will
usually have nonzero components alongx, y, and z, espe-
cially when an external magnetic fieldB is applied. From the
fact that¹3E50 it then follows that the columnar compo
nent ofE, namelyEx , is constant everywhere.12 BecauseJ
is independent ofx, the three-dimensional~3D! equation
¹•J50 only involvesJy andJz , the components ofJ in the
y,z plane that is perpendicular to the columnar axisx. If the
boundary conditions dictate thatEx50, then the electrica
potential f(r ) is also independent ofx, and the equation
¹•ŝ(r )•¹f(r )50 reduces to a two-dimensional~2D! equa-
tion in they,z plane.

It is then possible to define a dual 2D conductivity pro
lem, by rotating they andz components ofE andJ by 90° in
the y,z plane at every point in that plane, and calling t
rotated fieldsJD andED , respectively.13 These are the dua
current density or flux and dual electric field, and they sati
the 2D equations¹3ED5¹•JD50 in they,z plane. From
the relation

J~r !5ŝ~r !•E~r !, ŝ[S syy syz

szy szz
D , ~2.1!

which exists between the original 2D in-plane components
E andJ, it follows that the dual fields are related by14

JD~r !5ŝD~r !•ED~r !,
1

ŝD

[S szz 2szy

2syz syy
D , ~2.2!

ŝD5
1

detŝ
S syy szy

syz szz
D . ~2.3!
t
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We note that ifsyz5szy , then ŝD5ŝ/detŝ, and that if
syz5szy50, thensDyy51/szz andsDzz51/syy .

We are interested in the case where, in one of the c
stituents,ŝ(r ) represents an isotropic conductorM, with an
in-plane external magnetic fieldB. Choosing thez coordinate
axis to lie alongB, the 3D conductivity and resistivity ten
sors,ŝM and r̂M51/ŝM , have the forms

r̂M5r0S 1 2H 0

H 1 0

0 0 n
D , ~2.4!

ŝM5
1

r0S 1

11H2

H

11H2
0

2H

11H2

1

11H2
0

0 0
1

n

D , ~2.5!

where H5muBu is the Hall-to-transverse-Ohmic resistivit
ratio in theM constituent andm is its Hall mobility. The 2D
in-plane part ofŝM is simpler than the full 3D tensor be
cause it is diagonal. Moreover, the 2D dual conductivity te
sor ŝDM is proportional to the 2D part ofŝM ~where no
confusion can arise, we will use the same symbol to deno
full 3D tensor as well as its 232 lower right block ofy,z
components!:

ŝM5
1

r0 S 1

11H2
0

0
1

n

D , ~2.6!

ŝDM5r0S n 0

0 11H2D 5r0
2n~11H2!ŝM . ~2.7!

The other constituents are a perfect insulator, denoted
I and characterized in they,z plane by

ŝ I5S 0 0

0 0D , ŝDI5S ` 0

0 `
D , ~2.8!

and a perfect conductor, denoted byS and similarly charac-
terized by

ŝS5S ` 0

0 `
D 5ŝD I , ŝD S5S 0 0

0 0D 5ŝ I . ~2.9!

Solutions of the original 3D conductivity problem can b
used to determine the macroscopic or bulk effective 3D c
ductivity and resistivity tensors,ŝe , r̂e51/ŝe . These ten-
sors characterize the linear relation between the volume
eraged value of the current density^J& and that of the
electric field^E&

^J&5ŝe•^E&. ~2.10!
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In a columnar system, the constancy ofEx leads to a
number of exact relations among the various elements
r̂e .8 In the case where one of the constituents is a per
conductor, the fact thatEx[0, whatever the value of̂J&,
leads to the simple results8,7

rxx
(e)5rxy

(e)5ryx
(e)5rxz

(e)5rzx
(e)50. ~2.11!

Thus, only the 2D tensor, consisting of the 232 block in the
lower right corner ofr̂e , is nonzero. That 2D resistivity
tensor is just the inverse of they,z plane 2D part ofŝe ,
which can be obtained by solving a 2D conductivity proble
in they,z plane, whereŝ(r ) is a 2D diagonal tensor even i
the presence of an in-plane magnetic field. The resulting
tensor ŝe , while in general nondiagonal, will always b
symmetric. For a given microstructure,ŝe can be viewed as
a function of the constituent conductivity tensorsŝ i which is
homogeneous of order 1, namely

ŝe~lŝ1 ,lŝ2 , . . . !5lŝe~ ŝ1 ,ŝ2 , . . . !. ~2.12!

The bulk effective conductivity tensor of the dual proble
ŝD e is obtained by a similar procedure, where the vario
constituents are characterized by their dual conductivity t
sorsŝD i , but are put together with thesame microstructure
as the original problem which lead to the functio
ŝe(ŝ1 ,ŝ2 , . . . ). Therefore the dependence ofŝD e upon
ŝD i is given by thatsame function

ŝD e5ŝe~ ŝD 1 ,ŝD 2 , . . . !. ~2.13!

Applying Eqs.~2.7!, ~2.9!, ~2.12!, and~2.13! to the case of a
three constituentM /I /S mixture, we get

ŝDe5ŝe~ ŝD M ,ŝD I ,ŝD S!

5ŝe@r0
2n~11H2!ŝM ,ŝS ,ŝ I #

5r0
2n~11H2!ŝe~ ŝM ,ŝS ,ŝ I !. ~2.14!

From Eq.~2.3!, noting thatsyz
(e)5szy

(e) , we then conclude tha

the bulk effective 2D (y,z plane! conductivity tensorŝe

[ŝe(ŝM ,ŝ I ,ŝS) of any columnar M /I /S mixture is
proportional to the bulk effective 2D conductivit
tensor of the ‘‘I /S constituent exchanged composite’’ŝex

[ŝe(ŝM ,ŝS ,ŝ I), where theI and S constituents have ex
changed their spatial locations

ŝex5
1

r0
2n~11H2!

ŝe

detŝe

. ~2.15!

This can also be written in terms of the 2D (y,z plane! re-
sistivity tensorsr̂e and r̂ex of the I /S constituent exchange
columnar composites

r̂ex5 r̂e

r0
2n~11H2!

detr̂e

. ~2.16!
of
ct

D

s
-

A special case occurs when the microstructure is symm
ric, i.e., it is at least macroscopically invariant under t
above described spatial exchange of theI andS constituents
r̂ex5 r̂e . In that case, these exact relations reduce to
following relation between the three nonzero in-plane co
ponents ofr̂e , namely,r i

(e)[rzz
(e) , r̃'

(e)[ryy
(e) , and the off-

diagonal componentryz
(e) :

detr̂e[r i
(e)r̃'

(e)2~ryz
(e)!25r0

2n~11H2!. ~2.17!

The last relation can also be expressed in terms of the
responding components ofŝe :

detŝe[s i
(e)s̃'

(e)2~syz
(e)!25

1

r0
2n~11H2!

. ~2.18!

These relations are highly nontrivial: In the case of a c
lumnar microstructure which has a 2D periodicity and
strong in-planeB field, the resistivitiesr i

(e) , r̃'
(e) , ryz

(e) , as
well as the I /S constituent exchanged resistivitiesr i

(ex) ,

r̃'
(ex) , ryz

(ex) , will exhibit strong fluctuations asB is rotated in

that plane. Thus the fact thatr̂ex}r̂e in Eq. ~2.16!, and the
fact that the combination of elements ofr̂e which appears in
Eq. ~2.17! has a constant value independent of the direct
of B, are very strong statements. From Eqs.~2.15! or ~2.16!
it also follows that

r i
(e)

s̃'
(e)

5
r̃'

(e)

s i
(e)

52
ryz

(e)

syz
(e)

5r0
2n~11H2! ~2.19!

for a symmetric microstructure.
When the composite is notI /S-constituent-exchange sym

metric, some exact relations can be written between elem
of r̂e and those ofr̂ex . Those relations, which follow from
Eq. ~2.16! @see also Eqs.~4.6!–~4.7! in Ref. 7, which express
somewhat similar relations for atwo-constituentcomposite#,
are

ryz
(e)

ryz
(ex)

5
r i

(e)

r i
(ex)

5
r̃'

(e)

r̃'
(ex)

5
detr̂e

r0
2n~11H2!

5
r0

2n~11H2!

detr̂ex

.

~2.20!

Obviously, multiplication of any of these quotients by eith
detr̂ex or 1/detr̂e would transform it into a quantity that is
independent of the direction ofB.

If we choosey,z to lie along the common principal axe
of r̂e , r̂ex , then Eq.~2.16! reduces to

ryy
(ex)rzz

(e)5rzz
(ex)ryy

(e)5r0
2n~11H2!. ~2.21!

The results of the modified effective medium approximatio
for the asymptotic largeH behavior of r̂e in a disordered
columnarM /I /S mixture, satisfy this relation—see Eqs.~10!
and~11! in Ref. 9. If n51 andH50, and if the microstruc-
ture is either isotropic in they,z plane, or square or triangu
lar or hexagonal there, then this equation further reduces

rexre5r0
2 . ~2.22!

If the microstructure is also symmetric, thenre5rex5r0
irrespective of any further details of the microstructure.
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III. EXACT ASYMPTOTIC RESULTS FOR PERIODIC
MICROSTRUCTURES AT LARGE B

A. General considerations

We consider a columnar microstructure composed of
isotropic conductor host, denoted byM, inside of which is
embedded a periodic square array of infinitely long para
inclusions of constant cross section. The electrical proper
of those inclusions alternate between perfectly insulating,
noted by I, and perfectly conducting, denoted byS. Two
particularly simple microstructures of this kind, both
which are also symmetric or invariant under the exchang
the I and S constituents, are shown in Fig. 1. A magne
field Biz is always applied in the plane perpendicular to t
columnar axisx.

We now establish some general principles that govern
asymptotic electrical response of such microstructures w
uHu@1. For this it is of crucial importance thatszz

(M )

@syy
(M ) , and that eachS inclusion represents an equipote

tial. For those reasons, if a parallel layer ofM material along
z can be found which connects between a pair ofS inclusions
that are at different potentials, then current will flow betwe
those inclusions only through that layer and only alongz, to
leading order in powers of 1/H—see Fig. 2~a!. Such a flow
pattern minimizes the dissipation due to a given poten
differenceDf between those inclusions. BecauseJy!Jz in
that layer@by a factor of orderH2—see Eq.~2.6!#, therefore
Jz must be constant along each flow lineJz5Jz(y). Conse-
quently, Ez(y) will also be constant along each flow line
and its value will be given by

Ez~y!5
Df

l z~y!
, ~3.1!

wherel z(y) is they-dependent separation, alongz, between
adjacent edges of the twoS inclusions. Note, however, tha
althoughJy!Jz , Ey will, in general, have a magnitude sim
lar to that ofEz . In spite of this, the contribution ofEy to the
dissipation will be smaller than that ofEz by a factor of order
H2.

A case where no suchB-parallel layer ofM materialcon-
nects between a pair ofS inclusions that are at differen
potentials is shown in Fig. 2~b!, where a configuration is
depicted which is just the dual of the one shown in Fig. 2~a!.
In that case one can always findB-parallel layers which

FIG. 1. Two types of symmetric, periodic,M /I /S columnar
composites considered in this article. Thex axis is always taken to
be the columnar axis, and is perpendicular to the plane of
figure. A magnetic fieldB is applied in that plane, and thez axis is
always taken to lie alongB. u is the angle betweenB and the
nearest principal axis of the square array.
n

l
es
e-

of

e
n

n

l

separatethe twoS inclusions, as is the case in Fig. 2~b!. In
those regionsEz!Ey by a factor of orderH2—this is just the
dual of the situation encountered in the previous proble
This can also be deduced by minimizing the total dissipat
resulting from a given potential difference between the twS
inclusions. From the duality connection between Figs. 2~a!
and 2~b! we also conclude thatEy is independent ofz, Ey
5Ey(y), thereforeJy5Jy(y) is also independent ofz. This
can also be deduced from the requirement that¹3E50.
Again, althoughJz will be of the same order of magnitude a
Jy , its contribution to the total dissipation is smaller tha
that of Jy by a factor of orderH2. @This is so because th
inverse of the 2D conductivity tensor of Eq.~2.6! has ayy
component that is greater than itszz component by such a
factor.# From the above-mentioned duality connection w
also deduce thatEy(y)}1/l z(y), wherel z(y) is now the dis-
tance, throughM and alongz, between two neighboringI
inclusions that define the ends of theB-parallel separating
layers—see Fig. 2~b!. We can also deduce this from the r
quirement that the productJy(y) l z(y) must be independen
of y in those layers. The coefficient of proportionality can
found from the requirement

Df5E dyEy~y!, ~3.2!

whereDf is the potential difference between the twoS in-
clusions, and the limits of integration are the extreme val
of y determined by theS inclusions—see Fig. 2~b!.

B. Application to the case where B points in a general direction

We now apply the principles of Sec. III A to the case
Figs. 1~a! and 1~b!, when B points in a somewhat genera
direction, subtending an angleu with one of the principal

is

FIG. 2. Two basic types of configurations where the electri
transport between twoS inclusions becomes very simple in the lim
uHu@1: In ~a! there areB-parallel layers ofM material whichcon-
nect different S inclusions and are free of anyI material. In that
case, a potential difference between theS inclusions induces curren
flow mainly along z, with Jz(y) that is independent of zand in-
versely proportional to the distance alongz, l z(y), between adjacen
edges of those inclusions. In~b! there areB-parallel layers ofM
material whichseparatebetween differentS inclusions and are free
of any I material. In that case, a potential difference between thS
inclusions induces an electric fieldmainly along y, with Ey(y) that
is independent of zand inversely proportional tol z(y), which now
represents the length of thoseB-parallel layers, and is equal to th
distance alongz between adjacent edges of theI inclusions that
determine the ends of those layers. The particular configurat
shown in~a! and ~b! are related to each other by the classical d
ality transformation.
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axes of the periodic array. This angle will be somewhat
stricted as indicated below. For simplicity, we restrict o
discussion to the case of inclusions which are large enou
and anglesu which are also large enough, so that the situ
tions depicted in Figs. 2~a! and 2~b! always occur, but only
between nearest-neighborS inclusions. Focusing upon th
inclusions marked asS1 , S2 , S3 in Fig. 3~a!, it is clear that
S2 , S3 are in the situation of Fig. 2~a!, while S1 , S2 are in
the situation of Fig. 2~b!. Assuming a given potential differ
ence betweenS2 , S3, it is a straightforward matter to calcu
late the total current flowing between those inclusions in
limit uHu@1. We can then define an effective resistanceR23
as the ratio between that potential difference and the t
current. This comes out as~note that we are takingr0 to be
a 2D resistivity, thus it has the same physical dimension
the resistanceR23)

R235
2nr0

sin 2u@112 ln~11tanu!#22 sin2u

for arctanS a2b

b D<u<
p

4
~3.3!

in the case of square-rod shaped inclusions of cross se
b3b and nearest-neighbor center distancea, and will be
used to characterize the electrical transport betweenS2 , S3
for uHu@1. A similar calculation, for the case of circula
cylinder-shaped inclusions of radiusR and nearest-neighbo
center distancea, as shown in Fig. 1~a!, leads to

R235
nr0

2FS R

a
,u D for

1

A2
<cosu<

2R

a
, ~3.4!

where

FIG. 3. ~a! Symmetric, square array of alternatingI andS rods,
embedded in a hostM, with B along a general, nonsymmetry dire
tion, making an angleu with the nearest principal axis. If the in
clusions are large enough andu is not too small, then the transpo
betweenS2 andS3 is a special case of the configuration shown
Fig. 2~a!, while the transport betweenS1 andS2 is a special case o
the configuration shown in Fig. 2~b!. ~b! Resistor network whose
macroscopic response reproduces that of the actual comp
shown in~a! when uHu@1. The principal axes of the network ar

the (011) and (011̄) lattice axes of the actual composite structu

The resistors areR12 along (011) andR23 along (011̄). The values
of R12 and R23 are given by Eqs.~3.7! and ~3.3! for square-rod-
shaped inclusions, and by Eqs.~3.8! and~3.4! for circular-cylinder-
shaped inclusions.
-
r
h,
-

e

al

as

on

F~Z,u!5E
0

v0
dvH 2

cosu1sinu

cosu2sinu
2F S 2Z

cosu2sinu D 2

2~11v !2G1/2

2F S 2Z

cosu2sinu D 2

2~12v !2G1/2J 21

~3.5!

and

v0[5
cosu1sinu22Z

cosu2sinu
for cosu<

1

2Z
,

~12A4Z221!sinu

cosu2sinu
for cosu>

1

2Z
.

~3.6!

The second line in the definition ofv0 is relevant only when
2Z[2R/a.1, i.e., when there is partial overlap betwe
nearest-neighbor cylinders.

Calculation of the current flowing betweenS1 , S2 when
uHu@1, @see Fig. 3~a!# given a fixed potential difference be
tween them, yields the effective resistance

R125
1

2
r0H2$sin 2u@112 ln~11tanu!#22 sin2u%

5
nr0

2H2

R23
for arctanS a2b

b D<u<
p

4
~3.7!

in the case of square-rod-shaped inclusions. A similar ca
lation for the case of circular-cylinder-shaped inclusio
leads to

R1252r0H2FS R

a
,u D5

nr0
2H2

R23
for

1

A2
<cosu<

2R

a
.

~3.8!

The inequalities whichu must obey for these results to b
valid can only be satisfied ifb/a>1/2 in the case of the rods
or if R/a>1/A8 in the case of the cylinders. We note that,
the latter case, it is possible that neighboring cylinders ov
lap, and that the above expressions continue to be valid
long as there is no overlap between next-nearest neigh
cylinders, i.e., as long asR,a/A2. Under those overlap con
ditions for the circular cylinders, Eqs.~3.4! and~3.8! hold for
B in any in-plane direction, with the exception ofu50, i.e.,
Bi(001)—see Sec. III E below.

If the lower inequalities in Eqs.~3.3!–~3.8! are not satis-
fied, so that the angleu betweenB and the closest principa
axis of the inclusion array is less than arctan(a/b21) or
arccos(2R/a), then the equivalent resistor network becom
more complicated, i.e., it will have resistors connecting f
ther than nearest-neighbor sites. We note the somewhat
prising fact that, for the square-shaped rods, though not
the circular cylinders, bothR12 and R23 are independent o
the inclusion sizesb within the restrictions described abov
As we shall see in Secs. III C and III D below, this indepe
dence does not continue to hold in other configurations of
square-rods array.

For the purpose of evaluating asymptotic macroscopic
sponse, we may now replace the actual continuum compo
by a square network of resistors, where the sites or conn

ite

.
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tion points represent theS inclusions and the resistors alon
one direction are all equal toR23, while those in the perpen
dicular direction are all equal toR12—see Fig. 3~b!. Note
that the principal axes of the resistor network are fixed alo
the (011) and (011̄) directions of the original square array o
inclusions, but that the values ofR12, R23 depend on the
magnitude as well as on the direction ofB.

When this network model is valid, we can conclude th
r̂e has its principal axes along the fixed directions (011) a
(011̄), and that the two principal 2D resistivities are justR12
and R23. Using those, we can easily calculate asympto
values of the more usual 2D components ofr̂e , namelyr i

(e) ,

r̃'
(e) , ryz

(e)

r i
(e)>

1

2
~11sin 2u!R231

1

2
~12sin 2u!R12, ~3.9!

r̃'
(e)>

1

2
~12sin 2u!R231

1

2
~11sin 2u!R12, ~3.10!

ryz
(e)5rzy

(e)>6
1

2
cos 2u~R122R23!, ~3.11!

where the6 signs in the last equation have to do wi
whether the direction ofB is obtained by a clockwise or
counterclockwise rotation, by the angleu, from the nearest
principal axis: The lower sign ‘‘2 ’’ holds when that rotation
is clockwise, the upper sign ‘‘1 ’’ holds when it is counter-
clockwise. Note that all the components ofr̂e increase asH2

for uHu@1, without any saturation, and that they also depe
uponu, i.e., on the direction ofB with respect to the micro-
structure. However, when detr̂e is evaluated, one alway
gets back the asymptotic result

detr̂e>R12R235r0
2nH2, ~3.12!

which is independent of the direction ofB. Thus theH4

behavior and the directional oscillations of the two produ
r i

(e)r̃'
(e) and (ryz

(e))2 will cancel each other. Evidently, Eq
~3.12! is in full agreement with the exact result of Eq.~2.17!.

C. Application to the case Bi„011…

Whena,2b for the square rods—this case is covered
the discussion in Sec. III B—we simply need to putu545°
in all the expressions obtained there. However, in that spe
case we find thatryz

(e)50, while the diagonal resistivities
exhibit very different behavior at largeH

r i
(e)>R235

nr0

ln 2
, ~3.13!

r̃'
(e)>R125r0H2 ln 2. ~3.14!

Whena.2b for the square rods, a simple square netwo
of resistors is not enough to represent this configuration
addition to current flows between adjacentS inclusions,
which can still be represented by effective resistances
R12 andR23, there will also be uniform fields and currents
the inclusion-free,B-parallel M layers that now appear in
g

t
d

c

d

s

y

ial

k
In

e

between neighboring diagonal rows of inclusions. Taking
of this into account, one can again find closed form expr
sions for the diagonal components ofr̂e ~note that, again,
ryz

(e)50 due to the symmetry of this configuration!

r i
(e)>

nr0

12
2b

a
1 ln

a

a2b

, ~3.15!

r̃'
(e)>r0H2S 12

2b

a
1 ln

a

a2bD . ~3.16!

In contrast with Eqs.~3.13! and ~3.14!, and with the results
obtained in Sec. III B, these last results do depend on
~relative! inclusion sizesb/a.

For the case of circular cylinders, the expressions of
previous subsection are valid in the entire range 1/A8
,R/a,1/A2, but they must be used carefully, because
the limit u→p/4 one encounters vanishing denominators
some of those expressions. If one treats this case in sep
fashion, one can actually obtain the results in a very expl
form, namelyryz

(e)50 and

nr0

r i
(e)

5
r̃'

(e)

r0H2

522 arctanS 12A12e2

e D
1

2~11e!

Ae~21e!
arctanS A21e~12A12e2!

e3/2 D ,

~3.17!

where

e[
a

A2R
21,

1

A8
,

R

a
,

1

A2
. ~3.18!

The last inequality means that this result is also valid wh
there is some overlap between nearest-neighbor cylind
but not between next-nearest-neighbor cylinders, i.e., w
1/2,R/a,1/A2. As was the case with the square rods,
this configurationr i

(e) saturates whenuHu@1, and onlyr̃'
(e)

exhibits nonsaturatingH2 behavior. Again, it is evident tha
all the results obtained in this section are in full agreem
with Eq. ~2.17!.

D. Application to the case of nonoverlapping inclusions
when Bi„001…

In this case the local current distribution is very simp
and its asymptotic form can be found from simple physi
considerations: When̂E&iB, the current is restricted to th
inclusion-free parallel layers alongB, where it is uniform—
see Fig. 4~a!. Therefore we easily get

r i
(e)>

nr0

12b/a
~3.19!

for the square-rod array, and
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r i
(e)>

nr0

122R/a
~3.20!

for the circular-cylinder array.
When ^E&'B, the local electric field is nonzero only i

those same layers, where it is uniform and points alo
^E&—see Fig. 4~b!. Again it is easily found that

r̃'
(e)>r0H2S 12

b

aD ~3.21!

for the square-rod array, and

r̃'
(e)>r0H2S 12

2R

a D ~3.22!

for the circular-cylinder array.
As in the case whereBi(011), now tooryz

(e)50 because
of the reflection symmetry of theBi(001) configuration.
Also, now too the behavior ofr i

(e) , r̃'
(e) at largeH is quite

different—the first one saturates while the second increa
as H2 without any saturation. All the results satisfy E
~2.17!.

E. Results for overlapping cylindrical inclusions when Bi„001…

When there is a finite overlap between nearest-neigh
cylinders, but not between next-nearest-neighbor cylind
then there are noB-parallel layers inM that either connect o
separate between adjacentS inclusions. Some reflection
leads to the conclusion that, whenuHu@1, the current lines
in M will be restricted to a narrow bundle which is parallel
z—see Fig. 5~a!. The current distribution in this narrow re
gion cannot be calculated exactly, even in that limit. A
approximate form can be obtained by making a simple an
for the current profile, and including a width parameterw
which is determined by minimizing the resulting dissipatio
Assuming a triangular current profile, as shown in Fig. 5~b!,
we find that the dissipation is minimized when

w5
h

2uHu
, h[a2A4R22a2, ~3.23!

whereh is the length of the current bundle andw is its half
width, @see Figs. 5~a! and ~b!# and

FIG. 4. Asymptotic current and field distributions foruHu@1 in
the microstructure of Fig. 1~b! when Biz lies along the principal
axis (001) of the square array of inclusions.~a! When ^E&iz, then
Jz is nonnegligible and uniform only in theB-parallel, inclusion-
free layers, whileJy>0 everywhere.~b! When ^E&iy'B, thenEy

is non-negligible and uniform only in those same layers, whileEz

>0 everywhere.
g

es

or
s,

tz

.

r i
(e)

r0
>

3

2
nuHu,

r̃'
(e)

r0
>

2

3
uHu. ~3.24!

Of course,ryz
(e) vanishes due to symmetry. The coefficien

3/2 and 2/3 which appear here are surely only approxim
since they depend on the details of the ansatz that was
for the current profile. But we think the fact that bothr i

(e)

and r̃'
(e) exhibit nonsaturating behavior, increasing asuHu

when uHu@1, is exact. We believe that the somewhat s
prising conclusion, that these resistivities areindependent of
the cylinder radius, is also exact. Equation~2.17! is again
satisfied.

F. Results for some nonsymmetric microstructures

Closed-form asymptotic results can also be obtained
such systems, by a straightforward application of the id
and principles that were described in Secs. III A and III C.
few such results are presented here, for comparison with
merical computations described in Sec. IV below.

Consider a periodic square array of alternatingI /S inclu-
sions withunequal square cross sections, as shown in Fig. 6.
For ^J&iBizi(001) it is not difficult to calculate the uniform
currentsJz1 , Jz2 in the two B-parallel layers shown in the
left part of Fig. 6, wherebS.bI is assumed, i.e., theS rods
are thicker than theI rods. For^J&iy'Bizi(001) it is simi-
larly easy to calculate the uniform electric fieldEy1 in the
inclusion freeB-parallel layer, as shown in the right part o
that figure. Obviously, ifbS,bI , then there will also be
another uniform valueEy2 of the local electric field in some
other regions.

The results for macroscopic response areryz
(e)50, because

of the symmetry, and

FIG. 5. Schematic drawing of ay,z section of an overlapping
square array of alternatingI and S cylinders, of radiusR and
nearest-neighbor center distancea, embedded in anM host. Due to
the overlap, the inclusions are actually not full circular cylinde
but are truncated in such a way that adjacentI andS inclusions have
flat interfaces between them. Becauseszz

(M )@syy
(M ) when uHu@1,

therefore whenBi(001), the current which flows throughM be-
tween oneS region and its nearest-neighborS region is essentially
restricted to a narrow bundle of flow lines along thez axis, of length
h, as indicated by the dashed lines in the centralM region. ~b!
Triangular profile of the current densityJz(y) in that bundle, which
was used as an ansatz. The value of the width parameterw was
determined by minimizing the total dissipation.
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r i
(e)

r0
>5

n

12
bS

a
1

bS2bI

a2bI /2

, bS.bI ,

n

12bI /a
, bS,bI ,

~3.25!

r̃'
(e)

r0
>H H2S 12

bS

a D , bS.bI ,

H2S 12
bI

a
1

bI2bS

a2bS/2D , bS,bI .

~3.26!

The asymptotic result for theI /S constituent exchange
composite medium can now be obtained in each case
using theother line in Eqs. ~3.25! or ~3.26!, and switching
the roles ofbS andbI . It is then easily seen that these resu
satisfy the exact relations of Eq.~2.20!.

WhenBizi(011̄), we again find thatryz
(e)50, because of

the symmetry, and

r i
(e)

r0
>5

n

ln
2a2bI2bS

a2bS

, 1,
bI1bS

a
,2,

n

12
bI1bS

a
1 ln

a

a2bS

,
bI1bS

a
,1,

~3.27!

r̃'
(e)

r0
>H H2 ln

2a2bI2bS

a2bI
, 1,

bI1bS

a
,2,

H2S 12
bI1bS

a
1 ln

a

a2bI
D ,

bI1bS

a
,1.

~3.28!

FIG. 6. Square array of alternatingI and S rods, withunequal
cross sections bI3bI andbS3bS , respectively, embedded in anM
host. The distance between centers of adjacentS and I rods isa. A
magnetic fieldBiz is applied along a principal axis of the arra
Vertical dashed lines, which appear in the left part of the drawi
indicate whereJ(r ) is nonnegligible inM when ^E&iz and uHu
@1. Only Jz is then nonnegligible and, forbS.bI , it takes only
two different values, denoted here byJz1 , Jz2. Another set of ver-
tical dashed lines, which appear in the right part of the drawi
indicate whereE(r ) is nonnegligible when̂E&iy anduHu@1. Only
Ey is then nonnegligible, and it takes on just one value, denoted
Ey1, whenbS.bI . WhenbS,bI , thenEy can take on two different
nonzero values inM, Ey1 andEy2, if ^E&iy, while Jz then takes on
only one nonzero value if̂E&iz.
by

The asymptotic results for theI /S constituent exchanged
composite medium can be obtained by switching the role
bI and bS in these equations. Again, the results satisfy
exact relations of Eq.~2.20!.

IV. NUMERICAL CALCULATIONS ON PERIODIC
MICROSTRUCTURES

For numerical computations on the three-constituent co
posites discussed in this article we used an obvious exten
of the numerical approach which had been developed ea
for computing the magnetoresistivity of two-constituent p
riodic composites.3,11 The local conductivity tensorŝ(r ) can
now be written with the help of the two characteristic fun
tions u I and uS , whereu I(r )51 for rPI while u I(r )50
elsewhere, and similarlyuS(r )51 for rPS while uS(r )50
elsewhere,

ŝ~r !5ŝM2dŝ Iu I2dŝSuS , ~4.1!

dŝ I[ŝM2ŝ I , ~4.2!

dŝS[ŝM2ŝS . ~4.3!

Thus, whenever the combinationdŝu1(r ) or dŝug @u1(r ) is
the characteristic function of the inclusions in the tw
constituent mixture,ug[1/Va*Va

u1(r )e2 ig•rdV is its Fou-

rier transform,g is always a reciprocal-lattice vector appr
priate to the periodic microstructure# appears in those
references, it now needs to be replaced bydŝ Iu I(r )
1dŝSuS(r ) or by its Fourier transformdŝ Iug

(I )1dŝSug
(S) . In

this way we compute the bulk effective conductivity tens
ŝe of a composite with a periodic array of two types
infinitely long parallel inclusions, which are either perfect
insulating or perfectly conducting, embedded in an otherw
uniform free-electron-metal host~this means that we putn
51 everywhere! with zero field conductivity 1/r051 and
Hall-to-Ohmic resistivity ratioH. The perfectly insulating
inclusions are taken to haveŝ I50, while the perfectly con-
ducting inclusions are taken to haveŝS5sSÎ , whereÎ is the
unit tensor andsS has the large but finite value 50/r0 or
100/r0.

We first consider theI /S exchange symmetric periodi
array of circular cylinders, with unit cell shown at the top
Fig. 7. In the same figure we show polar plots of all t
in-plane components ofŝe , along with the determinan
detŝe[s i

(e)s̃'
(e)2(syz

(e))2, plotted vs the direction ofB, as
obtained from numerical computations. Also shown, in t
same plots, are the predictions of the asymptotic express
for ŝe and detŝe , and the exact result for detŝe . For the
range of directions discussed in Sec. III B, the numerica
calculated angular profiles are in good agreement with
results obtained by inverting the exact asymptotic expr
sions for the resistivity matrixr̂e , given by Eqs.~3.9!–
~3.11!. Along the (001)-like directions, the agreement b
tween the computed results forŝe and the asymptotic
expressions of Eqs.~3.20! and ~3.22! is less impressive@see
the hexagonal open points in Figs. 7~a! and ~b!#. The polar
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plot of detŝe , which appears in Fig. 7~d!, shows that the
numerically computed values are in good agreement with
exact result 1/@r0

2n(11H2)#, even whenBi(001). We con-
clude that the above mentioned discrepancy is mainly du
the small value ofH55, which apparently is not large
enough to warrant using the asymptotic expressions wheB
lies in that direction.

In Fig. 8 we show similar polar plots of the resistivit
tensor components,r̃'

(e) , r i
(e) , and ryz

(e) , along with their

determinant detr̂e5r i
(e)r̃'

(e)2(ryz
(e))2, vs the direction ofB.

The microstructure and physical parameters are the sam

FIG. 7. Polar plots ofs̃'
(e) , s i

(e) , syz
(e) , and the determinan

detŝe5s̃'
(e)s i

(e)2(syz
(e))2, vs the direction ofB, obtained from nu-

merical calculations on the three constituents,I /S exchange sym-
metric periodic composite, with unit cell shown at the top. T
infinitely long, parallel,I andScircular cylinders have radiusR and
distancea between nearest neighbor centers, withR/a50.45, and
are embedded in an otherwise uniform host with conductivity ten

ŝM of the form of Eq.~2.5! with H55, r051, n51. Thin lines
show the results of numerical calculations, boldface lines show
results obtained by inverting the 2D in-plane asymptotic resistiv

tensorr̂e , given by Eqs.~3.9!–~3.11!. The open hexagonal point
represent results obtained in similar fashion from the asympt

expressions~3.20! and ~3.22!. detŝe should always be equal to
1/@r0

2n(11H2)#, @see Eq.~2.18!# whatever the direction ofB—this
circle is shown as a dashed line in~d!, while the actual values of the
determinant, as obtained from the numerical results, are shown

thin solid line. The asymptotic results for detŝe are again shown as
boldface lines and hexagonal points. The ‘‘1 ’’ and ‘‘ 2 ’’ signs
shown in~c! denote the~alternating! sign ofsyz

(e) in the correspond-
ing lobe. Those signs continue to alternate from lobe to lobe.
2D Fourier transformsug

(I ) , ug
(S) , which were used in the numerica

procedure, are easily constructed from the 2D Fourier transf
ug5(2pR/a2ugu)J1(uguR) @J1 is a regular cylindrical Bessel func
tion# of the characteristic function of a simple square array of id
tical circular inclusions~see Refs. 3 and 11 for derivations ofug for
this and other periodic microstructures!. Throughout this article, the
reciprocal-lattice vectors used in our Fourier based calculation
square arrays are given byg5(2p/a)(ny ,nz), with the integersny ,
nz ranging from251 up to151.
e

to

as

in Fig. 7. The level of agreement between numerically co
puted and asymptotic results for the components ofr̂e , and
between both of those results and the exact results for der̂e ,
is similar to that found in Fig. 7. We note that Eq.~2.19!
predicts that the angular profiles ofr i

(e) , r̃'
(e) , and ryz

(e)

should be the same as those ofs̃'
(e) , s i

(e) , and 2syz
(e) , re-

spectively, up to the factorr0
2n(11H2). This is satisfied by

the numerical computations, as is clearly evident when
compare Figs. 7 and 8.

Figure 9 shows plots similar to those of Fig. 8, but for t
case of a square array of square cross section, (b3b), alter-
natingI andSrods instead of cylinders. In order to verify ou
numerical scheme, we also calculated angular profiles for
same microstructure using a different definition of the u
cell. Those results, as well as the new unit cell, are show
Fig. 10. The microstructure has now been rotated by 4
therefore the angular profiles ofr̃'

(e) , r i
(e) , andryz

(e) are also
rotated by the same angle, as compared to those of Fig.

In Fig. 11 we show results for a square array of altern
ing I and S cylindrical inclusions which are now larg
enough so that nearest-neighbor cylinders exhibit some o
lap. For this reason, neighboringI andS inclusions are sepa
rated by a flat interface, as shown in Fig. 5~a! and at the top
of Fig. 11. Equations~3.9!–~3.11! are now applicable to al
directions ofB, with the exception of the (001)-like direc
tions, where the asymptotic behavior is given by Eq.~3.24!.
The level of agreement between numerical computatio
asymptotic expressions, and exact results is similar to w
was found in the previous examples.

In Fig. 12 we show results for a square array of altern

r

e
y

ic

s a

e

m

-

n

FIG. 8. Polar plots of the resistivity tensor componentsr̃'
(e) ,

r i
(e) , ryz

(e) , and the determinant detr̂e5r i
(e)r̃'

(e)2(ryz
(e))2, vs the di-

rection ofB for thesame microstructurethat was the subject of Fig
7. The physical parameters used are also identical, as are the
ticular notations, namely thin line, boldface line, dashed line, h

agonal points,1/2 signs. detr̂e should always be equal to
r0

2n(11H2), whatever the direction ofB—that circle is shown in
~d! as a dashed line.
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FIG. 9. Similar to Fig. 8, but for a composite where the inc
sions have the shape of square cross-section (b3b) rods with dis-
tancea between nearest-neighborI and S rod centers, whereb/a
50.8—the unit cell is shown at the top. The same physical par
eters and notations are used as in Figs. 7 and 8. The 2D Fo
transformsug

(I ) , ug
(S) are easily constructed from the 2D Fouri

transformug5@sin(gyb/2)/gyb/2#@sin(gzb/2)/gzb/2# of the charac-
teristic function of a simple square array of identical rod-shap
inclusions.

FIG. 10. Polar plots of the resistivity tensor componentsr̃'
(e) ,

r i
(e) , ryz

(e) , and the determinant detr̂e5r i
(e)r̃'

(e)2(ryz
(e))2, vs the di-

rection ofB for thesame microstructurethat was the subject of Fig
9, but the calculations are performed using an alternative unit
shown at the top. The resulting microstructure, though identica
the one of Fig. 9, is rotated by 45°. Consequently, the polar p
should be the same as those of Fig. 9 but also rotated by that s
angle.
ing square cross-section rods which is not symmetric un
the exchange ofI andS inclusions, because the two types
rods have different thicknesses. In this case detr̂e is no
longer independent of the direction ofB, however, there are
other combinations of the components ofr̂e and r̂ex which
have that property—see Eq.~2.20!. Some of those are plotte
in Fig. 12, along with the angular profiles of the differe
components ofr̂e and r̂ex .

The deviations of the numerically computed values
those combinations from the precisely predicted circu
plots, as well as the deviations of the numerically compu
values of detŝe and detr̂e from the precisely predicted cir
cular plots in Figs. 7–11, can be ascribed to imperfect c
vergence of the numerical computations, and to the fact
the ‘‘perfectly conducting inclusions’’ were only 50 or 10
times more conducting than the normal conductor ho
When the number of harmonics retained in the Fourier-ba
numerical scheme is increased, those deviations decre
but they do not tend to 0~see Refs. 3 and 11 for a detaile
description of the numerical scheme!. Those deviations pro-
vide a good measure for the accuracy of the numerical c
putations, and also for the penalty which results from usin
large but finite value, instead of̀, for sS .

In contrast with the above described small discrepanc
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FIG. 11. Polar plots of the resistivity tensor componentsr̃'
(e) ,

r i
(e) , ryz

(e) , and the determinant detr̂e5r i
(e)r̃'

(e)2(ryz
(e))2, vs the di-

rection of B for a symmetric, periodic square array of alternati
I /S circular cylinders withpartial overlapof nearest-neighborI and
Scylinders—the unit cell is shown at the top. The cylinder radiusR
and nearest-neighbor center distancea satisfyR/a50.56, whileH
55. Notations are the same as in Figs. 7 and 8, but note that
small hexagons now denote asymptotic results which are o
approximate—see Eqs.~3.24! and the discussion in Sec. III E. Th
2D Fourier transformsug

(I ) , ug
(S) are now constructed from the 2D

Fourier transform of the characteristic function of a simp
square array of identical overlapping or truncated circu
inclusions: ug5(2pR/a2ugu)J1(uguR)2(4/a2gygz)@ I (gy ,gz)

1I (gz ,gy)#, where I (u,v)[u*0
AR22a2/4dx cos(ux)sin(vAR22x2)

2sin(ua/2)sin(vAR22a2/4).
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in the values of detŝe and detr̂e , the differences betwee

the numerically computed values of thecomponentsof ŝe ,

r̂e and the values predicted by some of the exact asymp
expressions usually have another significance: The rat

which r̂e tends to itsuHu@1 asymptotic behavior is some
times nonuniform. Figures 7–11 show that as the direction
B approaches one of the (001)-like directions, i.e., wheu
→0, those differences sometimes increase drastically for
value H55 that was assumed in those calculations. Ot
computations, done at greater values ofH, show that those
differences decrease with increasinguHu. For example, Fig.
12 shows results forH520: Those numerical computation
of r̂e agree well with the asymptotic expressions even wh
Bi(001). In some cases, as when neighboringI andS cylin-
ders partially overlap~see Fig. 11!, one finds that for any

FIG. 12. ~a!–~c!: Polar plots ofr̃'
(e) , r i

(e) , ryz
(e) for a nonsym-

metric periodic square array of alternatingI /S square cross-sectio
rods of widthsbI and bS , respectively, and distancea between
centers of nearest-neighbor rods. Those sizes are given bybI /a
50.4,bS /a50.8—the unit cell is shown at the top left. Solid line
show results of numerical computations forH520, with the other
physical parameters the same as in Fig. 7, while the black cir
show results of the asymptotic expressions Eqs.~3.25!–~3.28!. ~g!–

~i!: The same as~a!–~c! but for the components ofr̂ex , the bulk
effective resistivity tensor of theI /S exchanged microstructure
with unit cell shown at the top right.~d!, ~e!, ~f!: Polar plots vs the

direction ofB of three combinations of components ofr̂e and r̂ex ,
which are predicted to be independent of that direction: com

5 r̃'
(ex)detr̂e / r̃'

(e) , comb25r i
(ex)detr̂e /r i

(e) , and comb3

5ryz
(ex)detr̂e /ryz

(e) . All three combinations should be equal
r0

2n(11H2). That prediction appears as a dashed line circle
these plots, along with a solid line which represents the numer
computations and black points which represent the asymptotic
sults.
tic
at

f

e
r

n

finite value of H, no matter how large, the actual resu
deviate from the asymptotic predictions whenu is suffi-
ciently small.

In Figs. 13 and 14 we plot theH dependence of variou
components ofr̂e under different conditions. In Fig. 13 w
show log-log plots of dr i

(e)/r (e)(0) and dr̃'
(e)/r (e)(0)

@dr (e)(H)[r (e)(H)2r (e)(0)# vs H when B lies along one
of the (001)-like directions. Two types of alternatingI /S
square arrays are considered: Circular-cylinder inclusi
with and without overlap of nearest neighborI andS inclu-
sions. Completely different behavior is found in those tw
cases forr̃'

(e) andr i
(e) : In the case of nonoverlapping inclu

sions the in-plane transverse componentr̃'
(e) increases asH2

when uHu@1, in accordance with Eq.~3.22!, while the lon-
gitudinal componentr i

(e) saturates, in accordance with E
~3.20!. However, when neighboringI and S inclusions do
overlap, both componentsr̃'

(e) and r i
(e) increase asuHu for

uHu@1, in accordance with Eq.~3.24!. Note thatryz
(e) van-

ishes forB in those directions. Note also that, according
Eq. ~2.22! and its sequel, we should expect to getre(H
50)5r0. However, because the conductivitysS of the S
inclusions was taken to be only 50 or 100 times greater t
1/r0, instead of`, re(H50) should be somewhat greate
than r0. In practice, this scenario is observed only ifsS is
not so large, or if the total number ofg vectors retained in

es

1

n
al
e-

FIG. 13. Log-log plots of dr̃'
(e)/r (e)(0) and dr i

(e)/r (e)(0)
@wheredr i

(e)[r i
(e)(H)2r i

(e)(H50), etc.# vs H, obtained from nu-
merical calculations on anI /S exchange symmetric square array
alternatingI /S circular-cylinder inclusions whenBi(001). In one
case the radiusR and nearest-neighbor center separationa satisfy
R50.45a, so that there are no overlaps, while in the other case t
satisfy R50.56a, so that nearest-neighbor cylinders partia
overlap—the unit cells are shown in proximity to the releva
points. When there are no overlaps, the results agree with the

diction that r i
(e) saturates butr̃'

(e);H2 when uHu@1 @see Eqs.
~3.20! and~3.22!#. In the other case, where, due to the partial ov
lap, all cylinders are truncated and nearest-neighborI andS ~trun-
cated! cylinders have a flat interface, the results agree with

prediction that both componentsr̃'
(e) andr i

(e) increase asuHu when
uHu@1 @see Eq.~3.24!#. The physical parameters, with the exce

tion of H, are the same as in Fig. 7. Note that bothdr i
(e) anddr̃'

(e)

increase asH2 for both microstructures whenuHu!1. Note also that
re(H50)5r0 according to Eq.~2.22! and its sequel.
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the Fourier-based computations is increased to an e
greater number than indicated in the caption of Fig. 7. T
it appears that the convergence of those computations
increasing total number ofg vectors is nonuniform with re-
spect tosS : That convergence becomes much slower wh
sS→`.

WhenB lies along a direction which lacks reflection sym
metry, such as the (012) lattice axis in these microstructu
thenryz

(e) no longer vanishes and the situation is quite diff

ent. In Fig. 14 we show log-log plots ofdr̃'
(e)/r (e)(0),

dr i
(e)/r (e)(0), ryz

(e) , and d detre vs H for the case of non-
overlapping cylindrical inclusions whenBi(012). In this
caser i

(e) no longer saturates at largeH. For such directions

all components ofr̂e increase asH2 when uHu@1. Conse-

quently the productr̃'
(e)r i

(e) , as well as the squared off
diagonal resistivity component (ryz

(e))2, increase asH4. Nev-

ertheless, detr̂e only increases asH2: The leading H4

behavior of those two products cancels, leaving only anH2

behavior for the determinant, as explained right after
~3.12!.

Although this article has mostly focused on the behav
of r̂e in the strong-field regime, whereuHu.1, it is worth
noting that all the components ofdr̂e increase asH2 in the
weak-field regime, whereuHu!1. This is clearly evident
from the numerical results plotted in Figs. 13 and 14. T
weak-field regime will be discussed in detail in a future pu
lication.

FIG. 14. Log-log plots ofdr̃'
(e)/r (e)(0), dr i

(e)/r (e)(0), ryz
(e) ,

and d detr̂e /detr̂e(0) @whered detr̂e[detr̂e(H)2detr̂e(0) and

detr̂e5 r̃'
(e)r i

(e)2(ryz
(e))2], vs H, obtained from numerical calcula

tions on the composite with the same microstructure and phys
parameters as in Fig. 7, except forH, whenBi(012). All compo-

nents ofr̂e , as well as detr̂e , are now predicted to increase asH2

for largeH, as shown by the slope of the straight dashed line,
this is verified by these calculations. The behavior exhibited

d detr̂e or detr̂e whenuHu@1 is highly nontrivial, since it requires
cancellation of theH4 behavior of the separate contribution

r̃'
(e)r i

(e) and (ryz
(e))2—see the discussion following Eq.~3.12!. Note

that all the quantities plotted here increase asH2 not only when
uHu@1, but also whenuHu!1.
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V. SUMMARY AND DISCUSSION

General principles were developed for asymptotic ana
sis of macroscopic magnetotransport in three-constitu
M /I /S composites with a columnar microstructure, and w
a magnetic field perpendicular to the columnar axis. W
showed that the mathematical treatment can be reduce
that of a strictly 2D microstructure, where theM constituent
has a very anisotropic conductivity tensor but no Hall effe
~i.e., no antisymmetric components!. The crucial role of the
‘‘ B-parallel connecting layers’’ and the ‘‘B-parallel separat-
ing layers’’ between neighboringS inclusions was estab
lished. It was then exploited in order to construct a resis
network model for representing the strong-field macrosco
magnetotransport behavior of periodicM /I /S microstruc-
tures. We believe that the same approach will also be us
in the study of strong-field magnetotransport in random
lumnarM /I /S microstructures.

Those general principles were used in order to stu
strong-field magnetotransport in some periodicM /I /S co-
lumnar microstructures. In many cases we were able to
exact closed form expressions for the asymptotic mac
scopic conductivity tensorŝe . Numerical computations o
ŝe , performed for large but finite values ofH, were in good
agreement with those expressions. The components oŝe

and r̂e[1/ŝe were found to exhibit strong oscillations a
functions of the direction ofB. Those are qualitatively simi-
lar to the oscillations found in two-constituentM /I andM /S
columnar composites with a periodic microstructure. Ho
ever, there appear some interesting quantitative differen
Note, in particular, the very sharp features in the angular p
of r̃'

(e) vs the direction ofB, which appear whenBi(001), in
the case of an asymmetric square array of square cr
section rods—see Fig. 12~a!. We also note that in the cas
where the nearest-neighborS and I cylinders of an alternat-
ing square array overlap partially, so that theM constituent
~i.e., the host! fails to percolate in the plane perpendicular
the columnar axis, the local current distribution becom
quite singular whenuHu@1. This drastically alters the
asymptotic behavior of both r i

(e) and r̃'
(e) when

Bi(001)—see Fig. 13: Whereasr i
(e)}H0 andr̃'

(e)}H2 when

there is no overlap, bothr i
(e) and r̃'

(e) increase asuHu when
there is partial overlap between those cylinders. This is
to concentration of the local current density in theM con-
stituent into a narrow bundle, of width}1/uHu, alongB. This
behavior should make the directional oscillations of bothr i

(e)

and r̃'
(e) even more violent whenH is very large.

It would be interesting to try and test some of these
tailed predictions in a real composite medium. Also, t
strong oscillations of bothr i

(e) andr̃'
(e) with changing direc-

tion of B are not only interesting in themselves, but m
perhaps have some useful applications in the developme
magnetic field sensors that are very sensitive to that di
tion.

In order to make composite samples where these phen
ena might be observed, it would be necessary to use cons
entsM, I, S with transverse Ohmic resistivitiesrM , r I , rS ,
and Hall-to-transverse-Ohmic-resistivity ratioH of the M
constituent, that satisfy the following chain of inequalities

al

d
y
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rS!rM!H2rM!r I . ~5.1!

This can be achieved by using a doped semiconductor film
the M host, with perpendicular holes etched into it as thI
inclusions, as was done in Ref. 4, and with perpendicu
high conductivity metallic inclusions playing the role of th
Sconstituent. If Si-doped GaAs is used as theM host, with a
negative charge carrier density of 1.631018 cm23 and a mo-
bility m52500 cm2/V s at a temperature of 90 K, as in th
experiment described in Ref. 4, then a magnetic field of 4
would result inH5210. Such a material would have a
Ohmic resistivity of 1.631023 V cm, about 1000 times
greater than that of Copper. Thus, using Copper for thS
inclusions and etched holes for theI inclusions, there should
be no difficulty in satisfying all the above inequalities.

Although all the calculations described in this article a
sumed that the system was infinite in size, previous work
two-constituentM /I columnar composites examined in som
detail the effects of finite film thickness.15 It was argued
there that, whenever the film thicknessl and the heterogene
ity length scalea satisfya/ l !max(1,uHu), the infinite thick-
ness limit should be a good approximation. From numeri
computations on finite thickness films of that type it w
found that, whenl'a andH53, the magnitude of the bulk
effective resistivities was about 2/3 of their infinite thickne
values.15
B

,

as

r,

T

-
n

l

We showed that, whenuHu@1, one could often represen
the electrical transport between twoS inclusions by a single
effective Ohmic resistance. For a periodic array of inc
sions, this meant that the macroscopic system response c
be mimicked by that of an ordered resistor network, if t
inclusions are large enough and if the angleu betweenB and
the closest principal axis of the array is not too small. T
kind of representation, by a resistor network, may be e
more useful in the study of properties of disorderedM /I /S
columnar composites, where we would be able to num
cally simulate an ensemble of appropriately constructed r
dom resistor networks. Such a study is currently in progre

We used the classical duality transformation of 2D ele
trical conductivity to derive exact relations between the b
effective resistivities of anM /I /S columnar composite with
an arbitrary microstructure and those of the ‘‘I /S constituent
exchanged composite.’’ Those relations can be quite us
in providing a measure for the accuracy of numerical co
putations of those resistivities.
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