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The in-plane magnetoresistance of columnar composites is studied for a class of three-constituent mixtures
of normal conductor, perfect insulator, and perfect conductor, where the magneti® fisldpplied in the
plane perpendicular to the columnar axis. Exact relations are found between the bulk effective resistivity tensor
;Je of such a medium and that of a medium where the perfect insulator and perfect conductor have exchanged
their spatial locations. Exact expressions are found in some cases for the leading ordBrdahgerior offae,
for periodic microstructures and certain directions and ranges of directioBs lfimerical calculations are
used to compute,, in those microstructures for all directions Bf and for various magnitudes oB|. The
different results are compared and their significance is discussed.

[. INTRODUCTION of the classical duality transformation of two-dimensional

The magnetotransport properties of composite media hav@D) conductors was used to derive exact relations between
been subject to increased attention in recent years. Some tife resistivity components of akl/I columnar composite
this involves microstructures where one of the constituents igixture and those of arMl/S mixture with the same
ferromagnetic, leading to the phenomenon of “giantmicrostructure’ Recently, a study of disordered, two-
magnetoresistance:” However, even when none of the constituent columnar composites Mf/l andM/S mixtures,
constituents have any unusual magnetic properties, othg[sing a modification of the Bruggeman self-consistent
than the normal classical Hall effect which is present in allgffective-medium approximation, showed that such systems
electronic conductors, some surprising phenomena are founge, oxhibit interesting behavior wheii|>128 Very re-
to appear. Those in_clude.a bulk effectiye magnetoresistivit)éently’ a similar study of a disorderethree-constituent
which oscillates rapidly with changing directions of the mag-\1/1/S columnar composite revealed that such systems ex-

netic field B and the average current def?sw* whenB is I?ibit a critical point which is due to a different type of per-
large enough, in the case of a periodic microstructure, even i .
olation process.

that microstructure has a very high point symmetry, such ag . .
y mgh p y y In this paper, we report on other studies tifree-

cubic or squaré? The most striking effects were predicted . | . di h batand
for two-constituent columnar microstructures that are periconstituentcolumnar composite media, where batiand S

odic in the plane perpendicular to the columnar axis, where Jiclusions are embedded in ah host. In particular, we fo-
periodic array of inclusions is embedded in a normal con-CUS our att.ent_lon on such mlxture§ where the 2!3 microstruc-
ducting host, denoted b, and the inclusions are either ture is periodic. Such three-constituert/1/S microstruc-
perfectly insulating, denoted bl or perfectly conducting, tures, while they are more difficult to fabricate than periodic
denoted byS Those effects appear whénlies in that plane  two-constituenM/I or M/S microstructures, are expected to
and is strong enough so that the Hall-to-Ohmic resistivityallow greater flexibility in manipulating the macroscopic re-
ratio of theM constituentH= py.i/ ponmic= 1| B| (u is the  sponse.
Hall mobility of that constituent satisfies|H|>1. In that We first show that the three-dimension@D) transport
case, not only do the in-plane components of the bulk effecproblem in such a medium can be reduced to a 2D problem
tive resistivity tensop, oscillate strongly whei is rotated 1 the plane perpendicular to the columnar axis. We then use
in that plane, but they also often exhibit a nonsaturating beln€ classical duality transformation for such a medium to
havior, forever increasing @42 when|H|>1 56 obtain some exact relations between the bulk effective resis-
Another surprising result of those studies was that, quitdivity tensorp of a columnamM/I/S mixture and that of the
often, the local current distribution in such periodic micro- “1/S exchanged composite,” denoted by,, where thel
structures becomes very simple in the lifftit|>1. Thus, andSconstituents have exchanged their spatial locations. All
when the inclusion shapes and their periodic arrangement athis is done in Sec. II.
very simple,(e.g., square array of parallel circular cylinders In Sec. Ill we develop some general principles for con-
or square cross-section rodshe asymptotic current distri- ducting an asymptotic analysis of the strong fiéilé., |H|
butionJ(r) can be calculated in closed formBflies alonga >1) behavior of periodic, three-constituem,/I/S colum-
low order lattice axis of the array. Consequently, closed forrmar microstructures. We derive expressions for the leading-
expressions were also derived for the bulk effective longitu-order largeH behavior of the bulk effective resistivity com-

dinal resistivity p{® and the bulk effective in-plane trans- ponentsp(® andp{® in some such microstructures. This is

verse resistivit{b(f) 5% 1n another recent study, an extension done by first finding the asymptotic local electric current and
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field distributions using considerations and methods thafye note that ifo,,=o,,, then op=o/deto, and that if
were developed earliér'® This can usually be done only® ,=0,=0, thenzrD :yl/(,zz and op,,= 1o, .

lies in some selected directions, or in some restricted rangesyWe ayre interestedyyin the case where, iny)é)ne of the con-
of directions. In those ranges, it is found that the Macro;

scopic response of the system can somgtimes .be reprodqu-ﬁc_itplane external magnetic fieBl. Choosing the coordinate
by a simple regular resistor network, with resistances tha&xis to lie alongB, the 3D conductivity and resistivity ten-
can be calculated from the asymptotic analysis. This greatly '

simplifies the analysis of such systems. The resultspf8r ~ 5°"7m andpy=1low, have the forms

uents,o(r) represents an isotropic conductdr with an

and?;(f) are tested on some of the exact relations derived in 1 —-H 0
Sec. Il ~

In Sec. IV we use a numerical procedure, developed ear- pu=po| H 1 0F, 24
lier for calculating;)e of periodic microstructures, in order 0O 0 w»
to computep,, for all in-plane directions oB, and for vari-
ous finite values oH. Those results are exhibited as polar 1 H 0
plots of the different components @f,, and are compared 1+H? 1+H?
both with the exact relations of Sec. Il, and with the 1 N 1
asymptotic expressions found in Sec. Ill. &M:— ol, (2.5

Section V includes a discussion of our main results, as Pol 14+H2 1+H2
well as suggestions for further directions of research in this 1
area. 0 0 —

14
Il. THEORY where H=u|B| is the Hall-to-transverse-Ohmic resistivity

. . ) ratio in theM constituent angk is its Hall mobility. The 2D
We wil alyvays choose the cog@nate tf’ lie glong the in-plane part ofcy is simpler than the full 3D tensor be-
;olyrgnar a:qu. Tor;e Iﬁcalll colndluctl\lllt);. tlecrllzs(@)(r) V(\j”” thus  cause it is diagonal. Moreover, the 2D dual conductivity ten-
e independent of. The local electric fieldE(r) and current N ; 2
density or fluxJ(r) will also be independent of, but will Sor gom 1S proppmonal tc-) the 2D part oéy_(where no
' confusion can arise, we will use the same symbol to denote a

u;ually have nonzero compon.en'Fs ajongy, _and Z €SPe-  f| 3D tensor as well as its 22 lower right block ofy,z
cially when an external magnetic fieRlis applied. From the

fact thatV X E=0 it then follows that the columnar compo- components

nent of E, namelyE,, is constant everywheré.BecauseJ 1

is independent ofx, the three-dimensional3D) equation

V-J=0 only involvesJ, andJ,, the components af in the o 1l 1+m? 2.6
y,z plane that is perpendicular to the columnar axiff the M 0o ’ '

< |

boundary conditions dictate th&t,=0, then the electrical
potential ¢(r) is also independent of, and the equation
V-a(r)-Veé(r)=0 reduces to a two-dimension@D) equa-
tion in they,z plane. &DM=po(
It is then possible to define a dual 2D conductivity prob-

lem, by rotating they andz components oE andJ by 90° in
the y,z plane at every point in that plane, and calling the
rotated fields), andEp, respectively® These are the dual

v 0

0 1iH? =piv(1+Hoy. (2.7

The other constituents are a perfect insulator, denoted by
| and characterized in thg z plane by

current density or flux and dual electric field, and they satisfy 00 % 0
the 2D equation¥ X Ep=V-Jp=0 in they,z plane. From &lz( ) (}D,:< ) (2.9
the relation 00 0 o

and a perfect conductor, denoted $wnd similarly charac-
oyy oyz> 2.1 terized by

J(r)y=a(r)-E(r), &E(
Ozy Ozz A © 0 A A 0 0 A
O'S:( ):G-DI! O-DS:< ):0'|. (29)

which exists between the original 2D in-plane components of 0 o 0 0

E andJ, it follows that the dual fields are related 'y ) o o
Solutions of the original 3D conductivity problem can be

used to determine the macroscopic or bulk effective 3D con-

JIp(r)=p(r)-Ep(r), iz( T2z _Uzy), (2.2 ductivity and resistivity tensorsy, pe=1/o,. These ten-
op —0Oy;  Oyy sors characterize the linear relation between the volume av-
eraged value of the current densify) and that of the
electric field(E)
- 1 ( Oyy o-zy) 23
Op=—=x . . ~
P deto Oyz Ozz <J>=O’e-<E>. (21@
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In a columnar system, the constancy Bf leads to a
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A special case occurs when the microstructure is symmet-

number of exact relations among the various elements afic, i.e., it is at least macroscopically invariant under the
pe.% In the case where one of the constituents is a perfeciPove described spatial exchange of ttend S constituents

conductor, the fact theE,=0, whatever the value ofJ),
leads to the simple resufts

(e) —

Pxx W

Pxy &=

Pyx &=

Pxz &

Pax =0.

(2.11

Thus, only the 2D tensor, consisting of th&2 block in the
lower right corner Of;)e, is nonzero. That 2D resistivity
tensor is just the inverse of thgz plane 2D part ofo,,

which can be obtained by solving a 2D conductivity problem

in they,z plane, where}(r) is a 2D diagonal tensor even in

the presence of an in-plane magnetic field. The resulting 2D

tensor o, while in general nondiagonal, will always be
symmetric. For a given microstructure, can be viewed as

a function of the constituent conductivity tenserswhich is

homogeneous of order 1, namely
(}e()\(}l,)\(}z,...):)\a'e((}l,(}z,...). (212

The bulk effective conductivity tensor of the dual problem

b o IS obtained by a similar procedure, where the variou

constituents are characterized by their dual conductivity ten

sorsap;, but are put together with theame microstructure
as the original problem which lead to the function

0e(01,05, ...). Therefore the dependence of, . upon
op; is given by thatsame function

0be=0e(0p1,0p2, - - .). (2.13

Applying Egs.(2.7), (2.9), (2.12, and(2.13 to the case of a
three constitueni/1/S mixture, we get

0pe=0e(0pM+0D1,0p S)

=0d piv(l+H?) oy ,05,01]

=por(1+H?) oe(on ., 05,07). (2.14
From Eq.(2.3), noting thato{$) = o) , we then conclude that

the bulk effective 2D ¥,z plane conductivity tensoro,

=oe(oym.0,05) of any columnar M/I/S mixture is
proportional to the bulk effective 2D conductivity

tensor of the ‘1/S constituent exchanged composite?s,

=0e(oy.0s,07), Where thel and S constituents have ex-
changed their spatial locations

1 Oe

" p2p(1+H?) deto,

Oex

(2.195

This can also be written in terms of the 2, plane re-

sistivity tensorsp, and pe, of the 1/S constituent exchanged
columnar composites

“ R pév(l—i—Hz)

Pex™ Pe (2.16

detp,

Pex=pe. In that case, these exact relations reduce to the
following relation between the three nonzero in-plane com-
ponents off)e, namely,pﬁe)Epg, p(f)Epﬁ), and the off-

diagonal componens(? :

detpe=p{”p{?— (p{3 (2.17)

The last relation can also be expressed in terms of the cor-
responding components 6fe:

)?=por(1+H?).

detoe=0{?0{® —(0{7)?= (2.18

pgv(1+ H?) .

These relations are highly nontrivial: In the case of a co-
lumnar microstructure which has a 2D periodicity and a

strong in-planeB field, the resistivitiesp(®, p(®, p(?, as

well as thel/S constituent exchanged resistivitigg®™ ,

P, p{eY , will exhibit strong fluctuations aB is rotated in

that plane. Thus the fact that,p, in Eq. (2.16), and the
fact that the combination of eIements[ﬁg which appears in
Eqg. (2.17) has a constant value independent of the direction
of B, are very strong statements. From E@15 or (2.16

it also follows that

ﬁe) ~(e) (e)
1

Py p __pyz
70 o o

for a symmetric microstructure.

When the composite is nbtS-constituent-exchange sym-
metric, some exact relations can be written between elements
of pe and those ofp.,. Those relations, which follow from
Eq.(2.16 [see also Eq44.6)—(4.7) in Ref. 7, which express
somewhat similar relations fortavo-constituentomposite,
are

=piv(1+H?) (2.19

py  pl? p¥  detp,  pjr(1+H?)
2’ Pl P pgr(1+HY)  detpe,
(2.20

Obviously, multiplication of any of these quotients by either

detp,, or 1/detp, would transform it into a quantity that is
independent of the direction @.
If we choosey,z to lie along the common principal axes

of pe. pex, then Eq.(2.16) reduces to

p{p) = pl {0 = pu(1+H?). (2.21)

The results of the modified effective medium approximation,

for the asymptotic larged behavior ofp, in a disordered
columnarM/1/S mixture, satisfy this relation—see Eq40)
and(11) in Ref. 9. If y=1 andH =0, and if the microstruc-
ture is either isotropic in thg,z plane, or square or triangu-
lar or hexagonal there, then this equation further reduces to

PexPe=Po- (222

If the microstructure is also symmetric, theR=pe,= po
irrespective of any further details of the microstructure.
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FIG. 1. Two types of symmetric, periodidi/I/S columnar ) _ _ )
composites considered in this article. Thexis is always taken to FIG. 2. Two basic types of configurations where the electrical

be the columnar axis, and is perpendicular to the plane of thidransport between tw8inclusions becomes very simple in the limit
figure. A magnetic fiel® is applied in that plane, and tizeaxis is ~ |H[>1: In (a) there areB-parallel layers oM material whichcon-
always taken to lie alon@. @ is the angle betweeB and the  hectdifferent Sinclusions and are free of arymaterial. In that

nearest principal axis of the square array. case, a potential difference between Siaclusions induces current
flow mainly along z with J,(y) that isindependent of and in-
IIl. EXACT ASYMPTOTIC RESULTS FOR PERIODIC versely proportional to the distance along,(y), between adjacent
MICROSTRUCTURES AT LARGE B edges of those inclusions. Iib) there areB-parallel layers of\
material whichseparatebetween differen§inclusions and are free
A. General considerations of any | material. In that case, a potential difference betweertsthe

'jpclusions induces an electric fiefdainly along y with E,(y) that
is independent of and inversely proportional tb,(y), which how

embedded a periodic square array of infinitely long para”erepresents the length of thoBeparallel layers, and is equal to the
distance alongz between adjacent edges of thenclusions that

InC|USIOn.S of Cpnstant cross section. The eIeCtr.lcaI prqpert'eaetermine the ends of those layers. The particular configurations
of those inclusions alternate between perfectly insulating, de

) shown in(a) and (b) are related to each other by the classical du-
note_d by, ar_1d perfeptly conducting, der_lotegl I8 Two ality transformation.
particularly simple microstructures of this kind, both of

which are also symmetric or invariant under the exchange ofeparatethe two S inclusions, as is the case in Figb® In
the I and S constituents, are shown in Fig. 1. A magnetic iose regiong,<E, by a factor of ordeH?—this is just the
field Bl|z is always applied in the plane perpendicular to theqya) of the situation encountered in the previous problem.

columnar axisx. o This can also be deduced by minimizing the total dissipation
We now establish some general principles that govern thgagyiting from a given potential difference between the vo

asymptotic electrical response of such microstructures whepclusions. From the duality connection between Figs) 2
|[H[>1. For this it is of crucial importance thatly)  gng 2b) we also conclude the, is independent of, E,
>a§“§'), and that eacl® inclusion represents an equipoten- =E,(y), thereforel,=J,(y) is aiso independent af This
tial. For those reasons, if a parallel layerMfmaterial along  can also be deduced from the requirement fiatE=0.
zcan be found which connects between a paofclusions  Again, although, will be of the same order of magnitude as
that are at different potentials, then current will flow between\]y, its contribution to the total dissipation is smaller than
those inclusions only through that layer and only alan®  that of J, by a factor of ordetH2. [This is so because the
leading order in powers of B—see Fig. 2a). Such a flow jnverse of the 2D conductivity tensor of E(@.6) has ayy
pattern minimizes the dissipation due to a given potentiabomponent that is greater than itg component by such a
differenceA ¢ between those inclusions. Becauke<J, in  factor] From the above-mentioned duality connection we
that layer[by a factor of ordeH?>—see Eq(2.6)], therefore  glso deduce tha, (y) = 11,(y), wherel (y) is now the dis-
J; must be constant along each flow lidg=J,(y). Conse- tance, throughM and alongz, between two neighboring
quently, E;(y) will also be constant along each flow line, inclusions that define the ends of tBeparallel separating

We consider a columnar microstructure composed of a
isotropic conductor host, denoted B, inside of which is

and its value will be given by layers—see Fig. (). We can also deduce this from the re-
quirement that the produdy(y)!,(y) must be independent
B Adg of y in those layers. The coefficient of proportionality can be
EAy)= 1,(y)’ (3.3) found from the requirement
wherel,(y) is they-dependent separation, alongbetween _ f
adjacent edges of the tw®inclusions. Note, however, that Ad Ay, 3.2

althoughJ,<J,, E, will, in general, have a magnitude simi-
lar to that ofE, . In spite of this, the contribution d, to the
digsipation will be smaller than that &f, by a factor of order
H<.

A case where no sudB-parallel layer ofMl materialcon-
nects between a pair ofS inclusions that are at different
potentials is shown in Fig.(B), where a configuration is We now apply the principles of Sec. Il A to the case of
depicted which is just the dual of the one shown in Fig@2 Figs. 1a) and Xb), whenB points in a somewhat general
In that case one can always firgtparallel layers which direction, subtending an angl with one of the principal

whereA ¢ is the potential difference between the t8an-
clusions, and the limits of integration are the extreme values
of y determined by thé& inclusions—see Fig. (B).

B. Application to the case where B points in a general direction
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Il vo cosé+sing 27 2
S [T T[] 8 F(Z,0)= dvi 2 — — :
NE R, 0 cosf—sind || cosf—sind
\ L 7y 12
IS, 7 1 , 1/2 2 1/2) -1
> i 12 2 2
A\ i —(1+ N —==] —(1—
TN S X
S1 (011) Ay (3.9
@ ’ and
FIG. 3. (8) Symmetric, square array of alternatihgnd Srods, cosd+sind— 27 1
embedded in a ho#, with B along a general, nonsymmetry direc- _— for cosf=< ==,
tion, making an angle with the nearest principal axis. If the in- cosf—sind 2Z
clusions are large enough adds not too small, then the transport Vo= ) (3.9
betweenS, andS; is a special case of the configuration shown in (1-\4z?—1)sing ; _ 1
Fig. 2(a), while the transport betwee®, andS, is a special case of cosf—sin@ or cos¢=> 27"

the configuration shown in Fig.(B). (b) Resistor network whose

macroscopic response reproduces that of the actual compositene second line in the definition of, is relevant only when

shown in(a) when|H|>1. The principal axes of the network are 2Z=2R/a>1, i.e., when there is partial overlap between

the (011) and (O1)Llattice axes of the actual composite structure. nearest-ne!ghbor cylinders. .

The resistors ar&y, along (011) andR,; along (01). The values Calculation of the current flowing betwee3), S, when

of Ry, and Rys are given by Eqs(3.7) and (3.3 for square-rod-  |H|>1, [see Fig. 8a)] given a fixed potential difference be-

shaped inclusions, and by Edq8.8) and(3.4) for circular-cylinder- ~ tween them, yields the effective resistance

shaped inclusions. 1
o _ _ Ri==poH?{sin26[1+2 In(1+tan@)]— 2 sirf 6}

axes of the periodic array. This angle will be somewhat re- 2

stricted as indicated below. For simplicity, we restrict our

discussion to the case of inclusions which are large enough,

and angle® which are also large enough, so that the situa- 23

tions depicted in Figs.(@) and 2b) always occur, but only

between nearest-neighb& inclusions. Focusing upon the

inclusions marked aS,, S,, S; in Fig. 3a), it is clear that

a—b

2112
vpoH
=20 for arctar(—

b |~ 4 @9

in the case of square-rod-shaped inclusions. A similar calcu-
lation for the case of circular-cylinder-shaped inclusions

S,, S; are in the situation of Fig. (@), while S;, S, are in leads to

the situation of Fig. th). Assuming a given potential differ- R Vp2H? 1 R
ence betweels,, S;, it is a straightforward matter to calcu- Ry,= 2p0|-|2|:<_,9> =0 for — <cosf< —.
late the total current flowing between those inclusions in the a Ras V2 a

limit |[H|>1. We can then define an effective resistaRgg (3.9

as the ratiq between that potential diﬁerencg and the totaf,o inequalities whichd must obey for these results to be
current. This comes out dsote that we are takingo 0 be i can only be satisfied i/a=1/2 in the case of the rods,
a2D resistivity, thus it has the same physical dimensions a5r if RIa= 1/\/8 in the case of the cylinders. We note that, in
the resistanc&y) the latter case, it is possible that neighboring cylinders over-
lap, and that the above expressions continue to be valid as
R 2vpg long as there is no overlap \7_etween next-nearest neighbor
237 . oo cylinders, i.e., as long @&<a/+/2. Under those overlap con-
sin26[1+2 In(1+tan)] -2 sirf6 ditions for the circular cylinders, Eqé3.4) and(3.8) hold for
B in any in-plane directionwith the exception ob=0, i.e.,
B||(001)—see Sec. Il E below.
If the lower inequalities in Eq9.3.3)—(3.8) are not satis-
fied, so that the anglé betweenB and the closest principal
in the case of square-rod shaped inclusions of cross sectiaxis of the inclusion array is less than arcth{1) or
bxb and nearest-neighbor center distargseand will be  arccos(R/a), then the equivalent resistor network becomes
used to characterize the electrical transport betwgenS; more complicated, i.e., it will have resistors connecting fur-
for |[H|>1. A similar calculation, for the case of circular- ther than nearest-neighbor sites. We note the somewhat sur-
cylinder-shaped inclusions of radiisand nearest-neighbor prising fact that, for the square-shaped rods, though not for
center distance, as shown in Fig. &), leads to the circular cylinders, botiR,, and R,; are independent of
the inclusion size® within the restrictions described above.
As we shall see in Secs. Il C and Il D below, this indepen-

f ab)_, T 3.3
or arctaT\\Z (3.3

1 2R . . ! .
Ros= Po for =<cosf< —, (3.9 dence does not continue to hold in other configurations of the
ZF(— 0) V2 a square-rods array.
a’ For the purpose of evaluating asymptotic macroscopic re-

sponse, we may now replace the actual continuum composite
where by a square network of resistors, where the sites or connec-
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tion points represent th8inclusions and the resistors along between neighboring diagonal rows of inclusions. Taking all
one direction are all equal f&,5, while those in the perpen- of this into account, one can again find closed form expres-
dicular direction are all equal t&,;;—see Fig. &). Note  sjons for the diagonal components pf (note that, again,
that the prmmpal_axe.s of'the resistor r?e.twork are fixed anngjgeZ):o due to the symmetry of this configuratjon

the (011) and (01)Ldirections of the original square array of

inclusions, but that the values &5, R, depend on the o) VPo

magnitude as well as on the direction Bf pﬁ 2b a’ (3.19
X When this network model is valid, we can conclude that 1- ;Hnﬂ
pe has its principal axes along the fixed directions (011) and
(011), and that the two principal 2D resistivities are j&sb ~(e)_ o 4 2b a
and R,5. Using those, we can easily calculate asymptotic p1”=poH (1 ZHnﬁ : (3.18
- e
Xi!)u es((;))f the more usual 2D componentppf namelyp ﬁ g In contrast with Eqs(3.13 and(3.14), and with the results
PL" Pyz obtained in Sec. Il B, these last results do depend on the
1 1 (relative) inclusion si;esb/a. _ _
pﬁe)z §(1+Sin 26) R23+§(1—sin 20)R;,, (3.9 For the case of circular cylinders, the expressions of the

previous subsection are valid in the entire range/8l/
1 1 <R/a<1/\/2, but they must be used carefully, because in
(&= 5(1_Sin 20)Rys+=(1+sin20)Ry,, (3.10  the limit /— /4 one encounters vanishing denominators in

p

2 some of those expressions. If one treats this case in separate
. fashion, one can actually obtain the results in a very explicit
€
p§ez)=p§ey)5iicos (R~ Ry, 31p form. namelyp{?=0 and
~(e
where the* signs in the last equation have to do with YPo _ pﬁ)
whether the direction oB is obtained by a clockwise or a p‘e) poH?
counterclockwise rotation, by the anghe from the nearest .
principal axis: The lower sign “ " holds when that rotation -5 arctaf 1-vl-e )
is clockwise, the upper sign+" holds when it is counter- €
clockwise. Note that all the componentsggfincrease asi?
for |[H|>1, without any saturation, and that they also depend n 2(1+e) arcta V2+e(1-V1-€)
uponé, i.e., on the direction oB with respect to the micro- Ve(2+ €) e '
structure. However, when dﬁ; is evaluated, one always (3.17
gets back the asymptotic result
where
detpe=RyRps=pgrH?, (3.12
L . a 1 R 1

which is independent of the direction d@. Thus theH* e=—-1, =<—<—. (3.18
behavior and the directional oscillations of the two products V2R V8 a |2

p{?p(? and (p{?)? will cancel each other. Evidently, Eq. The last inequality means that this result is also valid when
(3.12 is in full agreement with the exact result of H§.17.  there is some overlap between nearest-neighbor cylinders,
but not between next-nearest-neighbor cylinders, i.e., when

C. Application to the case B(011) 1/2<R/a<1/\2. As was the case with the square rods, in

Whena< 2b for the square rods—this case is covered bythis configurationp(® saturates whefH|>1, and onlyp{®
the discussion in Sec. lll B—we simply need to pt45°  exhibits nonsaturatingl? behavior. Again, it is evident that
in all the expressions obtained there. However, in that specidll the results obtained in this section are in full agreement
case we find thap{?=0, while the diagonal resistivities With Eq. (2.17.
exhibit very different behavior at large
D. Application to the case of nonoverlapping inclusions

vpo when B[ (001)
P9=Ros=1— (313 _ o ,
In this case the local current distribution is very simple,

~ ) ) and its asymptotic form can be found from simple physical
p1 =R1p=poH"In2. (3.149  considerations: Whe(iE)||B, the current is restricted to the

) inclusion-free parallel layers alor, where it is uniform—
Whena>2b for the square rods, a simple square networksee Fig. 4a). Therefore we easily get

of resistors is not enough to represent this configuration. In

addition to current flows between adjaceBtinclusions, vpo

which can still be represented by effective resistances like pﬁe) El——b/a (3.19
Ris> andR,3, there will also be uniform fields and currents in

the inclusion-free B-parallel M layers that now appear in for the square-rod array, and
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FIG. 4. Asymptotic current and field distributions fdt|>1 in
the microstructure of Fig. (b) when B||z lies along the principal
axis (001) of the square array of inclusiorig). When(E)||z, then
J, is nonnegligible and uniform only in thB-parallel, inclusion-
free layers, whilel,=0 everywhere(b) When(E)|yL B, thenE,
is non-negligible and uniform only in those same layers, whkije
=0 everywhere.

Vpo

=1-2Ria (320

p{”

for the circular-cylinder array.

When (E)L B, the local electric field is nonzero only in
those same layers, where it is uniform and points alon
(E)—see Fig. 4b). Again it is easily found that

p{¥=poH?| 1-— (3.2
for the square-rod array, and

~ 2R

pﬁ%pon( 1-— (3.22

for the circular-cylinder array.
As in the case wherg(011), now toop{=0 because
of the reflection symmetry of th@®|(001) configuration.

Also, now too the behavior gf(®, p{¥ at largeH is quite
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(a)

FIG. 5. Schematic drawing of @,z section of an overlapping
square array of alternating and S cylinders, of radiusR and
nearest-neighbor center distargeembedded in aM host. Due to
the overlap, the inclusions are actually not full circular cylinders,
but are truncated in such a way that adjadeartidSinclusions have
flat interfaces between them. Becaus§>o{)) when|H|>1,
therefore whenB||(001), the current which flows througkl be-
tween oneS region and its nearest-neighb8region is essentially

Yestricted to a narrow bundle of flow lines along thexis, of length

h, as indicated by the dashed lines in the cenMategion. (b)
Triangular profile of the current densify(y) in that bundle, which
was used as an ansatz. The value of the width parametgas
determined by minimizing the total dissipation.

~(e)

e)

ﬁ 3 p1
_N_VH , —
po 2 A Po

3 (3.29

[HI.

Of course,p(yez) vanishes due to symmetry. The coefficients
3/2 and 2/3 which appear here are surely only approximate,
since they depend on the details of the ansatz that was used
for the current profile. But we think the fact that bqsff’

and p{® exhibit nonsaturating behavior, increasing |&4

different—the first one saturates while the second increaseshen |H|>1, is exact. We believe that the somewhat sur-

as H? without any saturation. All the results satisfy Eq.

(2.17).

E. Results for overlapping cylindrical inclusions when B/(002)

prising conclusion, that these resistivities ardependent of
the cylinder radiusis also exact. Equatiof2.17) is again
satisfied.

F. Results for some nonsymmetric microstructures

When there is a finite overlap between nearest-neighbor
cylinders, but not between next-nearest-neighbor cylinders, Closed-form asymptotic results can also be obtained for
then there are nB-parallel layers irM that either connect or such systems, by a straightforward application of the ideas
separate between adjace8t inclusions. Some reflection and principles that were described in Secs. Il Aand IlI C. A

leads to the conclusion that, whéid|>1, the current lines
in M will be restricted to a narrow bundle which is parallel to
z—see Fig. 5a). The current distribution in this narrow re-
gion cannot be calculated exactly, even in that limit. An

few such results are presented here, for comparison with nu-
merical computations described in Sec. IV below.

Consider a periodic square array of alternating inclu-
sions withunequal square cross sectiqras shown in Fig. 6.

approximate form can be obtained by making a simple ansatZor (J)| B|z|(001) it is not difficult to calculate the uniform

for the current profile, and including a width parameter
which is determined by minimizing the resulting dissipation.
Assuming a triangular current profile, as shown in Fid)5
we find that the dissipation is minimized when

h

Im, h= 4R

w a— —as, (3.23

whereh is the length of the current bundle amdis its half
width, [see Figs. &) and(b)] and

currentsJ,,, J,» in the two B-parallel layers shown in the
left part of Fig. 6, wherdog>Db, is assumed, i.e., thBrods
are thicker than thé rods. For(J)||yL BJ||z[(001) it is simi-
larly easy to calculate the uniform electric fied, in the
inclusion freeB-parallel layer, as shown in the right part of
that figure. Obviously, ifbs<b,, then there will also be
another uniform valu&,, of the local electric field in some
other regions.

The results for macroscopic response;a{ﬁ%= 0, because
of the symmetry, and



14 320 DAVID J. BERGMAN AND YAKOV M. STRELNIKER PRB 62

I The asymptotic results for th&/S constituent exchanged
s |I| S . . . L
T R BN composite medium can be obtained by switching the roles of
5 b, and bg in these equations. Again, the results satisfy the
R Y IB ! o
T Jo— i z exact relations of E¢(2.20.
[y, | 8 |, Dilie
M T ; . y IV. NUMERICAL CALCULATIONS ON PERIODIC
o [ MICROSTRUCTURES
S T S bg . . .
!II — For numerical computations on the three-constituent com-

-~ posites discussed in this article we used an obvious extension
of the numerical approach which had been developed earlier
for computing the magnetoresistivity of two-constituent pe-

riodic composites:** The local conductivity tensar(r) can
now be written with the help of the two characteristic func-
tions 6, and 65, where 6,(r)=1 for rel while 6,(r)=0
elsewhere, and similarlgs(r)=1 for r e S while 65(r)=0
elsewhere,

FIG. 6. Square array of alternatingand S rods, withunequal
cross sections X b, andbgX bg, respectively, embedded in &h
host. The distance between centers of adjaSeantd| rods isa. A
magnetic fieldB||z is applied along a principal axis of the array.
Vertical dashed lines, which appear in the left part of the drawing,
indicate whereJ(r) is nonnegligible inM when (E)|z and |H|
>1. Only J, is then nonnegligible and, fdig>b,, it takes only
two different values, denoted here By, J,,. Another set of ver-

tical dashed lines, which appear in the right part of the drawing, &(r)=&M— 531 0,— 58'303, (4.2
indicate whereE(r) is nonnegligible whelE)|y and|H|>1. Only
E, is then nonnegligible, and it takes on just one value, denoted by 50' UM (T| 4.2)
E,1, whenbg>b, . Whenbs<b,, thenE, can take on two different ' '
nonzero values iM, Ey; andE,,, if (E)|ly, while J, then takes on . .
only one nonzero value {fE)||z. 00s=0\y~0s. (4.3
v Thus, whenever the combinati@iar6;(r) or 8o 6, [ 01(r) is
" bs be—b,’ bs>b;, the c.haracter.istic function of the inc!gsr,ions' irj the two-
L: a + a—b,/2 (325 c-onst|tuent mlxt.ureﬂg— 1/Vafva.01(r)e -dV is its Fou
Po rier transform,g is always a reciprocal-lattice vector appro-

v be<b priate to the periodic microstructireappears in those
3 S | s . ~

1-b,/a references, it now needs to be replaced by, 6,(r)

+ 80s0(r) or by its Fourier transfornéa, 63+ sos6{” . In

this way we compute the bulk effective conductivity tensor
&e of a composite with a periodic array of two types of
infinitely long parallel inclusions, which are either perfectly
insulating or perfectly conducting, embedded in an otherwise
uniform free-electron-metal hosthis means that we put

(3.26
. . =1 everywherg with zero field conductivity d,=1 and
The asymptotic result for thé/S constituent exchanged 4, ohmic resistivity ratioH. The perfectly insulating

composite medium can now be obtained in each case by . - ]
using theother linein Egs. (3.25 or (3.26), and switching inclusions are taken to havg =0, while the perfectly con-
the roles ofbg andb . It is then easily seen that these resultsducting inclusions are taken to hawg=o'l, wherel is the
satisfy the exact relations of E(R.20). unit tensor andog has the large but finite value 3/ or

WhenB||z(011), we again find thap{=0, because of 100/po. _ _ o
the symmetry, and We first consider thd/S exchange symmetric periodic
’ array of circular cylinders, with unit cell shown at the top of
Fig. 7. In the same figure we show polar plots of all the
in-plane components ofr,, along with the determinant
detoe=o{%5'?—(0{?)2, plotted vs the direction oB, as

= obtained from numerical computations. Also shown, in the
Po v same pl icti i i

7 , plots, are the predictions of the asymptotic expressions

_ b'+b3+|n a a for o, and detr,, and the exact result for det. For the
\ a a—bg range of directions discussed in Sec. Il B, the numerically
calculated angular profiles are in good agreement with the
results obtained by inverting the exact asymptotic expres-

sions for the resistivity matrixf)e, given by EQs.(3.9-

bs
2
;Ee) H (1_g), bs>b|,

o bl—bs>

b
Po Hz(l——'+

ahys  Ps<b

( 14 b|+bs

| 2a—b,—bg’ a '
n—

Pﬁe) a—bs

2a—b,—bg

@ | HIIn g

Po H2

b, +bg a

+In

(3.11). Along the (001)-like directions, the agreement be-
tween the computed results fo}e and the asymptotic
expressions of Eq$3.20 and(3.22) is less impressivésee
the hexagonal open points in Figga¥and (b)]. The polar
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FIG. 7. Polar plots ofo(®, of, o7, and the determinant FIG. 8. Polar plots of the resistivity tensor componept?,

T (e) (&) _( (e)y2 i i i - ~ -
deto,= o oﬁ (047)?, vs the direction oB, obtained from nu o p(yez), and the determinant dﬁLZPﬁe)Pie)—(P§i))2, vs the di-

. . . _ ‘
merlt_:al ca_lcu!atlons on _the th_ree cpnstltueml§ exchange sym rection ofB for the same microstructuréhat was the subject of Fig.
metric periodic composite, with unit cell shown at the top. The

- : - 7. The physical Iso identical, h -
infinitely long, parallel] andScircular cylinders have radiu? and e physical parameters used are also identical, as are the par

. . ticular notations, namely thin line, boldface line, dashed line, hex-
distancea between nearest neighbor centers, vita=0.45, and y

are embedded in an otherwise uniform host with conductivitytensof"‘gonal points, +/— signs. dep, should always be equal to

2 T . ) .
G of the form of Eq.(2.9 with H=5, po=1, »=1. Thin lines _ Po'{ I ), Waatever ihe drrection dB—=ihat cirele fs shown in
show the results of numerical calculations, boldface lines show thé '

results obtained by inverting the 2D in-plane asymptotic resistivity

tensorp,, given by Eqs(3.9—(3.11). The open hexagonal points in Fig. 7. The level of agreement between nume[ically com-
represent results obtained in similar fashion from the asymptotiputed and asymptotic results for the componentpQfand

exprzessions(3.20) and (3.22. deto, should always be equal to  between both of those results and the exact results for.det
U pgv(1+H?)], [see Eq(2.18] whatever the direction ®—this s similar to that found in Fig. 7. We note that E@.19
circle is shown as a dashed line(t), while the actual values of the ; : e) ~(e) (e)
redicts that the angular profiles and
determinant, as obtained from the numerical results, are shown asp?] d be th 9 h P ~4p) @tﬁe)' pid ' © Pyz
thin solid line. The asymptotic results ford%gare again shown as S ou. e the same as t cz)se T ’Zaﬁ ’_ar.' _U_yz.’ re-
boldface lines and hexagonal points. The-* and “—" signs  SPectively, up to the factgrr(1+H?). This is satisfied by

shown in(c) denote thealternating sign of o in the correspond-  the numerical computations, as is clearly evident when we

ing lobe. Those signs continue to alternate from lobe to lobe. Th&OMpare Figs. 7.and 8. _

2D Fourier transforms)’, 5, which were used in the numerical ~ Figure 9 shows plots similar to those of Fig. 8, but for the
procedure, are easily constructed from the 2D Fourier transforngase of a square array of square cross sectlor o), alter-
0,=(2mR/a?|g|)J1(|gIR) [J; is a regular cylindrical Bessel func- natingl andSrods instead of cylinders. In order to verify our
tion] of the characteristic function of a simple square array of iden-numerical scheme, we also calculated angular profiles for the
tical circular inclusiongsee Refs. 3 and 11 for derivations@ffor ~ same microstructure using a different definition of the unit
this and other periodic microstructuje$hroughout this article, the cell. Those results, as well as the new unit cell, are shown in
reciprocal-lattice vectors used in our Fourier based calculations offig. 10. The microstructure has now been rotated by 45°,
square arrays are given gy (2m/a)(n, ,n,), with the integers,,, therefore the angular profiles ﬁf) , Pﬁe) ’ andp(yez) are also

n ranging from—>51 up to+51. rotated by the same angle, as compared to those of Fig. 9.

plot of deto,, which appears in Fig. (@), shows that the . In Fig. 11 we_sho_w re_sults for a square array of alternat-
ing | and S cylindrical inclusions which are now large

numerically computed values are in good agreement with thgnough so that nearest-neighbor cylinders exhibit some over-

lap. For this reason, neighborimgndSinclusions are sepa-
Pated by a flat interface, as shown in Figapand at the top
of Fig. 11. Equation$3.9—(3.11) are now applicable to all
directions ofB, with the exception of the (001)-like direc-

the small value ofH=5, which apparently is not large
enough to warrant using the asymptotic expressions vihen

lies in that direction. . ; L
. - ... tions, where the asymptotic behavior is given by E324).
In Fig. 8 we shg\/(\g)3|m|L?r polar (B)Iots of the.reS|st|\l/|ty The level of agreement between numerical computations,
tensor componentsy;”, p{?, and p{, along with their  asymptotic expressions, and exact results is similar to what
determinant deie=p{*p{?— (p{?)2, vs the direction oB.  was found in the previous examples.

y :
The microstructure and physical parameters are the same asIn Fig. 12 we show results for a square array of alternat-
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FIG. 9. Similar to Fig. 8, but for a composite where the inclu- e)F'G('e)ll' Polar plots of the resistivity tensor componesif3,

sions have the shape of square cross-sectionb)) rods with dis- o » pyz » and the determinant dﬁfF_Pﬁe);ie)—(Pﬁ))z, vs the di-
tancea between nearest-neighbbrand S rod centers, where/a  rection of B for a symmetric, periodic square array of alternating
=0.8—the unit cell is shown at the top. The same physical paraml/S circular cylinders wittpartial overlapof nearest-neighbdrand

eters and notations are used as in Figs. 7 and 8. The 2D Fouri&cylinders—the unit cell is shown at the top. The cylinder radtus
transformsé!), 65 are easily constructed from the 2D Fourier and nearest-neighbor center distaacsatisfy R/a=0.56, whileH

transform 6= sin(g,b/2)/g,b/2][ sin(g/2)/g,b/2] of the charac- =5. Notations are the same as in Figs. 7 and 8, but note that the
teristic function of a simple square array of identical rod-shapecsmall hexagons now denote asymptotic results which are only
inclusions. approximate—see Eq€3.24 and the discussion in Sec. Il E. The

2D Fourier transform#’, ¢{% are now constructed from the 2D

Fourier transform of the characteristic function of a simple
square array of identical overlapping or truncated circular
inclusions: 0g=(27R/a%|g|)J,(|9|R) — (4/a’g,g,)[1(9y ,0,)

+1(9,.9,)], where I(u,v)=uf 3% ~2"dx cosxsin@VRZ—x?)
—sin(ua/2)sin(v\/R2—a2/4).

-
y ing square cross-section rods which is not symmetric under
P e) the exchange of andSinclusions, because the two types of

rTTTpTTTT rods have different thicknesses. In this casef)geits no
longer independent of the direction Bf however, there are

other combinations of the components gf and poy Which
have that property—see E@.20. Some of those are plotted
in Fig. 12, along with the angular profiles of the different

components 0, and pey .

The deviations of the numerically computed values of
those combinations from the precisely predicted circular
plots, as well as the deviations of the numerically computed

values of detr, and dep, from the precisely predicted cir-
cular plots in Figs. 7—11, can be ascribed to imperfect con-
vergence of the numerical computations, and to the fact that
the “perfectly conducting inclusions” were only 50 or 100
times more conducting than the normal conductor host:
FIG. 10. Polar plots of the resistivity tensor componesi@, ~ When _the number of_ hgrmonics retained in the _Fourier-based
pﬁe) (® and the determinant dﬁ&:pﬁe)ﬁﬁe)—(p(ﬁ)z, vs the di.  Numerical scheme is increased, those deviations decrease,

' Y7 :
rection ofB for the same microstructuréhat was the subject of Fig. Put they do not tend to Gsee Refs. 3 and 11 for a detailed

9, but the calculations are performed using an alternative unit celdescription of the numerical schemé&hose deviations pro-
shown at the top. The resulting microstructure, though identical to/ide @ good measure for the accuracy of the numerical com-
the one of Fig. 9, is rotated by 45°. Consequently, the polar plotgutations, and also for the penalty which results from using a
should be the same as those of Fig. 9 but also rotated by that sani@rge but finite value, instead ef, for o.

angle. In contrast with the above described small discrepancies
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—50(():orgb3500 | gx)| FIG. 13. Log-log plots of 5p(¥/p®(0) and 8p{®/p‘®(0)
100 Py [where 8p{®=p{?(H) — p{(H=0), etc] vs H, obtained from nu-
400 3 /‘\\,\‘5 E merical calculations on alfS exchange symmetric square array of
200 g_f € 50 3 alternatingl/S circular-cylinder inclusions wheB|(001). In one
_208 ER & 53 3 case the radiuR and nearest-neighbor center separatiosatisfy
3 ] VE E R=0.4%, so that there are no overlaps, while in the other case the
-400 EE 27 3100 E P y

satisfy R=0.56, so that nearest-neighbor cylinders partially
overlap—the unit cells are shown in proximity to the relevant
FIG. 12. (8—(c): Polar plots Of;(f)v pﬁe), pglez) for a nonsym- points. When there are no ovgrlaps, the results agree with the pre-
metric periodic square array of alternatins square cross-section diction that p{® saturates bup{®~H? when [H|>1 [see Egs.
rods of widthsb, and bs, respectively, and distance between  (3.20 and(3.22]. In the other case, where, due to the partial over-
centers of nearest-neighbor rods. Those sizes are give, ky  1ap, all cylinders are truncated and nearest-neighkand S (trun-
=0.4<bg/a=0.8—the unit cell is shown at the top left. Solid lines cated cylinders have a flat interface, the results agree with the
show results of numerical computations fér=20, with the other  prediction that both componeng$® andp{® increase agH| when
physical parameters the same as in Fig. 7, while the black circlefH|> 1 [see Eq.(3.24)]. The physical parameters, with the excep-
show results of the asymptotic expressions E§25—(3.28. (9)—  tion of H, are the same as in Fig. 7. Note that bo{® and sp(®
(i): The same aga)—(c) but for the components q?ex, the bulk  increase asi? for both microstructures wheitl|<1. Note also that
effective resistivity tensor of thé/S exchanged microstructure, pe(H=0)=p, according to Eq(2.22 and its sequel.
with unit cell shown at the top rightd), (e), (f): Polar plots vs the
direction ofB of three combinations of componentsfgfand[)ex,
which are predicted to be independent of that direction: comb
=p{™detpe/p{®,  comb2=p(™detpe/p|®, and  comb3
=p{e9detpe/pl . All three combinations should be equal to

-500 O 500 -100 O 100

finite value of H, no matter how large, the actual results
deviate from the asymptotic predictions wheénis suffi-
ciently small.

In Figs. 13 and 14 we plot thEl dependence of various
yz

p2v(1+H?). That prediction appears as a dashed line circle inCOMPONeNts op, under different conditions. In Fig. 13 we
these plots, along with a solid line which represents the numericathow log-log plots of 5pﬁe)/p(e)(0) and 5p(f)/p(e)(0)
computations and black points which represent the asymptotic rg-5p(®(H)=p(®(H)— p®(0)] vs H whenB lies along one
sults. of the (001)-like directions. Two types of alternatimgS
square arrays are considered: Circular-cylinder inclusions
) - - . with and without overlap of nearest neighbdoand S inclu-
in the values of det, and depe, the differences between gjons Completely different behavior is found in those two
the numerically computed values of themponent®f o, cases fop!® andpﬁe): In the case of nonoverlapping inclu-

pe and the values predicted by some of the exact asymptotigjons the in-plane transverse compong!fit increases abi2
expressions usually have another significance: The rate dhen|H|>1, in accordance with Eq3.22, while the lon-
which pe tends to its|H[>1 asymptotic behavior is some- gitudinal componenp(® saturates, in accordance with Eq.
times nonuniform. Figures 7—11 show that as the direction 0{3.20. However, when neighboring and S inclusions do

B approache_s one of the (0Q1)-Iik_e directions, i._e., when overlap, both componenisl® and pﬁe) increase asH| for
—0, those differences sometimes increase drast!cally for thgy|>1, in accordance with E¢(3.24). Note thatpg,? van-
value H=5 that was assumed in those calculations. Othe{shes forB in those directions. Note also that, according to
computations, done at greater valuesHhfshow that those Eq. (2.22 and its sequel, we should expect to ge(H
differences decrease with increasit|. For example, Fig. =0)=p,. However, because the conductivitys of the S

12 shows results foH =20: Those numerical computations inclusions was taken to be only 50 or 100 times greater than
of p. agree well with the asymptotic expressions even wherl/pg, instead ofw, p,(H=0) should be somewhat greater
B|(001). In some cases, as when neighbotimgdScylin-  than p,. In practice, this scenario is observed onlyoif is
ders partially overlagsee Fig. 1} one finds that for any not so large, or if the total number gf vectors retained in
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B[ (012) V. SUMMARY AND DISCUSSION

1 sis of macroscopic magnetotransport in three-constituent,

q M/1/S composites with a columnar microstructure, and with

) /A**.", B a magnetic field perpendicular to the columnar axis. We

L x® J showed that the mathematical treatment can be reduced to
o that of a strictly 2D microstructure, where tive constituent

. det o has a very anisotropic conductivity tensor but no Hall effect

or A & pe ] (i.e., no antisymmetric componentdhe crucial role of the

g rrr General principles were developed for asymptotic analy-

S g “ B-parallel connecting layers” and theB-parallel separat-
- L L ing layers” between neighboring inclusions was estab-
* b lished. It was then exploited in order to construct a resistor
A B network model for representing the strong-field macroscopic
-5 0 5 magnetotransport behavior of periodM/1/S microstruc-
tures. We believe that the same approach will also be useful
In(H) . ; :
in the study of strong-field magnetotransport in random co-
: ~(e); (e) e/ (e (e lumnarM/1/S microstructures.
FIG. 14. Log-log plots ofopy {p_ ), 5p{%/p ©). Py Those general principles were used in order to study
and S detp,/detpe(0) [where § detp.=detp.(H) —detps(0) and . . .
det) =73(e)pﬁe)—(p<e))2] vs H. obtained from numerical calcula- strong—flelld magnetotransport in some perioi¢l/S co-
tionseon lthe| comp(y)Zsite,with t’he same microstructure and physic Jumnar microstructures. In many cases we were a}ble to get
I xact closed form expressions for the asymptotic macro-
parameters as in Fig. 7, except fidr whenB||(012). All compo- ) o - ) )
nents ofp, as well as dep,, are now predicted to increase 142 §cop|c conductivity tensor,. Numerical computations of
for largeH, as shown by the slope of the straight dashed line, and”e, Performed for large but finite values bf, were in good
this is verified by these calculations. The behavior exhibited byagreement with those expressions. The Component&eof
8 detp, or detp, when|H|> 1 is highly nontrivial, since it requires  and p,=1/o, were found to exhibit strong oscillations as
cancellation of theH* behavior of the separate contributions f,nctions of the direction oB. Those are qualitatively simi-
p{?p( and (p{7)?>—see the discussion following E(.12. Note  |ar to the oscillations found in two-constituekit/l andM/S
that all the quantities plotted here increaseHsnot only when  columnar composites with a periodic microstructure. How-
|H|>1, but also whenH|<1. ever, there appear some interesting quantitative differences:
Note, in particular, the very sharp features in the angular plot
the Fourier-based computations is increased to an eveof ",S(f) vs the direction oB, which appear wheB|(001), in
greater number than indicated in the caption of Fig. 7. Thushe case of an asymmetric square array of square cross-
it appears that the convergence of those computations witkection rods—see Fig. {&. We also note that in the case
increasing total number af vectors is nonuniform with re- where the nearest-neighbSrand| cylinders of an alternat-
spect toos: That convergence becomes much slower whering square array overlap partially, so that teconstituent
g0, (i.e., the hostfails to percolate in the plane perpendicular to
WhenB lies along a direction which lacks reflection sym- the columnar axis, the local current distribution becomes
metry, such as the (012) lattice axis in these microstructuredUite singular when|H[>1. This drastically alters the
thenp{? no longer vanishes and the situation is quite differ-asymptotic - behavior of both p|® and p{® when
ent. In Fig. 14 we show log-log plots 08p(®/p®(0),  Bl(001)—see Fig. 13: Wheregg?ocH® andp(®«H? when
5p{?1p©(0), p{2, and s detp, vs H for the case of non- there is no overlap, botp(® andp(® increase a$H| when
overlapping cylindrical inclusions wheB|(012). In this thereis partigl overlap between those cylinde_rs. This is due
casep(® no longer saturates at large For such directions [0 concentration of the local current density in thiecon-
~ 9 stituent into a narrow bundle, of width1/H|, alongB. This
all components ofp, increase asdi® when|H|>1. Conse-

. behavior should make the directional oscillations of hefft
quently the productp‘f)pﬁe), as well as the squared off- andﬁ(e) even more violent wheHl is very large.
diagonal resistivity componenp(?)?, increase asi®. Nev- It would be interesting to try and test some of these de-
ertheless, det, only increases adi®: The leadingH*  tailed predictions in a real composite medium. Also, the
behavior of those two products cancels, leaving onlyHgn strong oscillations of botbﬁe) andfa(f) with changing direc-
behavior for the determinant, as explained right after Edtion of B are not only intleresting in themselves, but may

(3.12. erhaps have some useful applications in the development of

Although this article has mostly focused on the l:)eh"’“”c"}r)nagnetic field sensors that are very sensitive to that direc-

of pe in the strong-field regime, wher¢d|>1, it is worth  tion.

noting that all the components 6{86 increase a$i? in the In order to make composite samples where these phenom-
weak-field regime, wheréH|<1. This is clearly evident ena might be observed, it would be necessary to use constitu-
from the numerical results plotted in Figs. 13 and 14. TheentsM, I, Swith transverse Ohmic resistivitigs, , p,, ps,
weak-field regime will be discussed in detall in a future pub-and Hall-to-transverse-Ohmic-resistivity ratld of the M
lication. constituent, that satisfy the following chain of inequalities:

In[6p(H)/p(0)]
b

|

n
| T
™~
*
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ps<pu<H?pu<p,. (5.2) We shgwed that, whefH|>1, one coulq often represent

. . , . . the electrical transport between tdnclusions by a single
This can be a(_:hleved by using a doped semlcpndu_ctor film 3tective Ohmic resistance. For a periodic array of inclu-
the M host, with perpendicular holes etched into it as kthe gjqng this meant that the macroscopic system response could
inclusions, as was done in Ref. 4, and with perpendicularye mimicked by that of an ordered resistor network, if the
high co.nductlvny _metalhc |nclus!ons playing the role. of the inclusions are large enough and if the angleetweerB and
Sconstituent. If Si-doped GaAs is usedgas "E?OSL witha  ihe closest principal axis of the array is not too small. This
negative charge carrier density of X&0'”cm*and a MO Lind of representation, by a resistor network, may be even
bility 2=2500 cnt/V's at a temperature of 90 K, as in the 1,6 yseful in the study of properties of disordetddl /S
experiment de;scnbed in Ref. 4, then a magnetlc field of 40 Toojumnar composites, where we would be able to numeri-
would result inH=—10. SUSQ a material would have an .1y simulate an ensemble of appropriately constructed ran-
Ohmic resistivity of 1.&10"{ cm, about 1000 tmes yom resistor networks. Such a study is currently in progress.
greater than that of Copper. Thus, using Copper for3he \ye ysed the classical duality transformation of 2D elec-
inclusions and etched holes for thenclusions, there should  yic4| conductivity to derive exact relations between the bulk
be no difficulty in satisfying all the above inequalities. effective resistivities of aM/I/S columnar composite with

Although all the calculations described in this article as-gn arbitrary microstructure and those of the'S constituent

sumed that the system was infinite in size, previous work oR changed composite.” Those relations can be quite useful
two-constituenM/I columnar composites examined in SOMej, yroviding a measure for the accuracy of numerical com-
detail the effects of finite film thickness.It was argued putations of those resistivities.

there that, whenever the film thickndsand the heterogene-
ity length scalea satisfya/l <max(1|H|), the infinite thick-
ness limit should be a good approximation. From numerical
computations on finite thickness films of that type it was This research was supported in part by grants from the
found that, wheri~a andH = 3, the magnitude of the bulk US-Israel Binational Science Foundation, the Israel Science
effective resistivities was about 2/3 of their infinite thicknessFoundation, the Ministry of Absorption of the State of Israel,
values® and NSF Grant No. DMR 97-31511.
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