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Abstract

In the framework of self-consistency effective medium approximation, we derive an expression for the effective resistivity of the

Miller–Abrahams resistor networks with hopping conductivities, and we compare it with results of numerical simulations of such

networks. In our approach we modify the effective medium approximation to include the presence of the Josephson junctions in granular

(low- and high- T c) superconductors.
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1. Introduction

Nanoscopic granular materials cannot be treated as
classical composites [1], since the typical size of their grains
(of the order �15–20 nm) requires the quantum-mechanical
description. Despite the big progress made in the theory of
disordered and percolating media, the main tools for
studying such systems remain the effective medium
approximation (EMA) and the resistor network numerical
simulations (RNNS). In this work we modify both EMA
and RNNS in order to take into account the quantum
effects including quasi-particles tunneling and the presence
of Josephson junctions. It enables us, e.g., to calculate the
temperature dependences of the superconductor–insulator
transition in granular superconductors.

2. Quasi-particle tunneling

The most common and convenient expression for the
inter-granular hopping resistance Rij (between the ith and
jth grains) is the well-known formula [2]

Rij ¼ R0 expðrij=r0 þ �ij=kBTÞ, (1)
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where rij is the distance between two grains, r0 is the scale
over which the wave-function decays outside the grain,
�ij ¼ ðjEij þ jEjj þ jEi � EjjÞ=2 is the activation energy and
R0 is a scaling resistance. In order to perform numerical
simulations, we express the random distance between
grains as rij ¼ 2l � xij, where xij is a random number taken
from a uniform distribution in the range (0,1), and l is the
mean distance between metallic grains [3]. At sufficiently
high temperatures T (when the thermal hopping term
�ij=kBT is small compared with the spatial one rij=r0), the
expression for Rij can now be rewritten as [3]

Rij ¼ R0 expðk � xijÞ, (2)

where k � 2l=r0 can be interpreted as the dimensionless
mean tunneling distance or as the degree of disorder (the
lower the density of the deposited grains, the larger is k).
The latter interpretation is since for larger k, for two values
of xij the values of Rij are more separated [3].
Further treating of the system can be performed by the

construction of a Miller–Abrahams resistor network [2]. In
Ref. [4] an analytical expression (derived in the percolation
approach) is presented for the average effective resistance
Re of such resistor networks. In the two-dimensional (2D)
case, it takes the form

Re ’ R0e
pck, (3)
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Fig. 1. A semi-log plot of the averaged resistance Re vs. k for samples with

different nearest-neighbors z. The results of numerical simulations (shown

by empty symbols) are in agreement with the analytical expression (5)

obtained with EMA (shown by lines). Presented are the cases with z ¼ 24

(pc ¼ 0:08), z ¼ 16 (pc ¼ 0:125), z ¼ 8 (pc ¼ 0:25), and z ¼ 4 (pc ¼ 0:5),
respectively. Inset shows the lattice with z ¼ 24 neighbors. The central

grain in each unit cell (shown by larger filled circles) is connected with z

neighbors (shown by smaller circles).
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where pc is the percolation threshold. Ref. [5] shows that in
2D, in the limit k!1, Eq. (3) is exact.

It is easy to show [3] that in the case of the 2D random
resistor bond network (for which z ¼ 4 and pc ¼ 0:5),
Eq. (3) follows immediately from the Keller–Dykhne
theorem [6], and is exact for an arbitrary k. According to
this theorem, the effective conductivity se of n-component
composite (with local conductivities si) and the analogous
quantity of the dual system (with s0i ¼ s�1i ) are connected

as follows: seðs1; s2; . . . ; snÞseðs�11 ; s�12 ; . . . ;s�1n Þ ¼ 1. Re-

writing Eq. (2) as sij�e
�0:5ke�k½xij�0:5� ¼ e�0:5ke�k

~x (where
~x 2 ð�0:5; 0:5Þ) and taking into account that se is a
homogeneous function (see e.g., Ref. [1]), i.e., that any
factor can be taken out from the brackets, we get

e�0:5kseð½e�k
~x�Þe0:5kseð½ek

~x�Þ ¼ 1. Here ½. . .� means that the

values ek
~x are arranged in the consequently increasing

order. Since sequences ½e�k
~x� and ½ek~r� are self-dual,

seð½e�k
~x�Þ ¼ 1. Multiplying this by e�0:5k, we get Eq. (3).

The effective resistance Re can be derived also in an
EMA framework [7]. If the local resistivities, R, are
distributed continuously in a range RminpRpRmax accord-
ing to some distribution function f ðRÞ, then Re can be
found by taking the integralZ Rmax

Rmin

f ðRÞ
R� Re

aRþ Re

� �
dR ¼ 0, (4)

where a ¼ z=2� 1 and z is the number of bonds
(neighbors) for each node of the network. If xij in Eq. (2)
is uniformly distributed between 0 and 1, then f ðRÞ ¼ 1=kR

(see e.g., Ref. [4]). Taking the integral (4), we obtain [8]

Re ¼ R0e
kpc

1� pc

pc

� �
1� e�kpc

1� e�kð1�pcÞ

� �
, (5)

where pc ¼ 1=ð1þ aÞ ¼ 2=z. In the limit pc ! 1, Eq. (5)
reduces to Re ¼ R0ðe

k � 1Þ=k, and the latter tends to R0

when k! 0. For a square lattice (z ¼ 4), Eq. (5) coincides
with Eq. (3).

To verify Eq. (5), we built bond-percolating Miller–
Abrahams like resistor networks [2,3], assuming the
conductivity of each resistor is given by Eq. (2). We wrote
the Kirchhoff equations for each site, solve the system of
the obtained coupled linear equations for the voltages at
every site and calculate the total effective resistance Re for
2D networks [3]. In Fig. 1, we show a semi-log plot of the
dependences Re vs. k, obtained from both numerical
simulations and analytical expressions (5).

3. Resistance distribution

As follows from Eqs. (3), (5), the effective resistance
of the system with wide range distribution (1) does not
depend on the size of the system, L. However, the other
properties of this system can depend on L. For example, we
found [3] that the distribution function PðRÞ (i.e., the
probability that the total resistance of the system is R) can
be approximated by the log-normal form [3]

PðRÞ ’
1ffiffiffiffiffiffi
2p
p

mR
exp �

ln2ðR=R̄Þ

2m2

� �
, (6)

where m ¼ aðpckÞ
n=L for both 2D and 3D cases (in 2D is

found that a ’ 0:5). Here n is the critical exponent in the
percolation correlation length x / ðp� pcÞ

�n (in 2D n ¼ 4
3
,

while in 3D n ’ 0:88 [4,9]). In fact, Eq. (6) includes also the
weak disorder case (mo1), (in this case Eq. (6) reduces to
the Gaussian form), while at extreme disorder (mb1)
the exponent function in Eq. (6) tends to 1, and PðRÞ

transforms to the power-like dependence �1=R. The value
m can be regarded as a criterion for weak and strong
disorder.
From Eq. (6) it follows that at m! 0, the distribution

function PðRÞ reduces to a delta-function

lim
m!0

PðRÞ ¼
1

R
lim
m!0

1ffiffiffiffiffiffi
2p
p

m
e� lnðR=ReÞ

2=2m2

¼
1

R
dðlnR� lnReÞ ¼ dðR� ReÞ.

Therefore, at m! 0 (i.e., k! 0 or L!1) the total
resistivity of the system is exactly R0e

pck and has no size
dependence: limm!0

R
RPðRÞdR ¼ Re.
4. Superconductor–insulator transition

In this section we present a model for studying the
superconductor–insulator transition [10,12] using EMA for
both low- and high-T c granular superconductors.
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4.1. Low-Tc superconductors

The resistance between two grains is governed either by
the Josephson junction coupling or by the quasi-particle
tunneling. The latter is described by Eq. (1), where �ij is
related to the superconducting gap [11], DijðTÞ, while
the Josephson junction coupling is determined by the
Boltzmann thermal energy, kBT , and the Josephson
binding energy, EJ, which is given by EJ ¼ ð_=2eÞJJ ¼

a½DðTÞ=R
ðnÞ
ij � tanh½DðTÞ=2kBT �, where JJ is the Josephson

current, a ¼ p_=4e2 ffi 3:25 kO and R
ðnÞ
ij is the normal

resistance between the grains [11,13]. The condition for
two neighboring grains to be Josephson coupled is
zEJXkBT , where z is the number of the nearest-neighbor-
ing grains [11]. Hence, we can determine the resistance
criterion for the Josephson coupling [13]:

R
ðnÞ
ij pRJ � zadðTÞ tanh½dðTÞ=2�, (7)

where dðTÞ ¼ DðTÞ=kBT . We can rewrite EMA equation
(4) in the form which takes into account the Josephson
couplingZ Rmax

Rmin

yðRe�D=kBT � RJÞf ðRÞ
R� Re

aRþ Re

� �
dR

�

Z Rmax

Rmin

yðRJ � Re�D=kBT Þf ðRÞdR ¼ 0, ð8Þ

where RJ is determined by Eq. (7). In the first integral we
calculate the cases when R is larger than necessary for the
Josephson coupling RðnÞ4RJ (i.e., when yðRðnÞ � RJÞ ¼ 1,
where y is the Heaviside function). Note, that RðnÞ ¼

R0 expðk � xÞ ¼ R exp½�DðTÞ=kBT �, see Eqs. (1)–(2). In the
second integral we consider the opposite situation, i.e.,
when yðRJ � RðnÞÞ ¼ 1. In this case Josephson coupling
exists and R in the brackets should be taken as zero
(R! 0). If x in Eq. (2) is uniformly distributed between 0
and 1, then f ðRÞ ¼ 1=kR, and R is varied in the range
R0e

dpRp R0e
dþk. From Eq. (8) we get [14]

Re ¼
1� pc

pc

ðR0e
~kpc � RJÞe

D=kBT

1� e� ~kð1�pcÞ
, (9)

where RJ is given by Eq. (7).

4.2. High-T c superconductors

In contrast to the low-T c superconductors described
above, the high-T c granular ceramics have wide dispersion
of the intrinsic transition temperature T c among different
grains [12]. This allows us to approximate the granular
sample as a mixture of normal and superconducting
particles and to use two-component EMA [7,12]. Our
approach takes into account both the strong geometrical
anisotropy of the grains (with aspect ratio �100) as well as
the presence of the Josephson junctions. Thus, instead of
the composite with conductivity tensor ŝð2Þ and oblate
shape of the inclusions, we can consider a composite with
spherical inclusions but a different conductivity tensor m̂ð2Þ,
satisfying [15]

mð2Þaa =m
ð2Þ
bb ¼ ðLb=LaÞ

2
ðsð2Þaa =s

ð2Þ
bbÞ, (10)

where La is a characteristic size in the direction a ¼ z; y; z
(e.g., the semi-axes of the ellipsoids a; b; c) in the initial
system. We then construct a random 3D resistor network
in order to perform Monte Carlo simulations of the
conductor/superconductor composite with host conductiv-
ity tensor m̂2 and calculate the effective conductivity m̂e of
the considered system. The effective conductivity tensor ŝe
can then be found as [15]

sðeÞaa ¼ ðs
ð2Þ
aa =m

ð2Þ
aa Þm

ðeÞ
aa . (11)

The knowledge of the local currents on each inter-grain
junction enables us to compare them with the critical
values of the Josephson current JJc, and simulate the
current- and the magnetic field-dependences of the
resistance transition of the entire sample [16].

5. Conclusion

In summary, we modify the EMA for the case of
hopping conductivity with many neighbors and the
presence of Josephson junctions. Our analytical expres-
sions are in agreement with the results of our numerical
simulations as well as with experimental measurements
[10,12,14].
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